Headbolt Lane to Rainford Project | United Kingdom
Data TransmissionUnited Kingdom of Great Britain and Northern Ireland

Headbolt Lane to Rainford Project

Operator
Network Rail
Country
United Kingdom of Great Britain and Northern Ireland
Partner
Trackwork
Segment
Main & Regional Line
Products
Data Transmission and Diagnostics
Year
07/2023
Scope of project
Data Transmission

As part of the project to expand Merseyrail services, the operator needed to address the challenge of transmitting indication information over a specific section, spanning from Headbolt Lane to Rainford. In this instance, Frauscher’s technology was utilised to fulfill the data transmission requirements of this project, avoiding expensive and time consuming cabling that would have otherwise been required.

This particular project aimed to extend Merseyrail services from Kirkby Station to a new station at Headbolt Lane. A major requirement consisted of the need to transmit TPWS indications, track circuit interrupter, and arrival and departure interrupter information from Headbolt Lane to Rainford, spanning 7 km. Initial plans involved installing new troughing and cables, a process that would require extensive access planning and would pose significant scheduling challenges due to the tight project timeline. Consequently, the Frauscher data transmission solution was selected as a more efficient alternative to address these requirements.

The Frauscher data transmission solution eliminated the need for new cable installations by leveraging the existing FTNx telecoms network. It enabled safe transmission of various status indications, meeting SIL 4 standards with its QUAD input configuration, which ensured redundancy and reliability without external monitoring. Additionally, the Frauscher Diagnostic System (FDS) provided real-time and historical data access, enhancing system oversight.

Cost-effectiveness

The Frauscher data transmission solution was selected for its competitive cost. One of the key advantages is its ability to minimise overall project costs by removing the necessity to install new cables and additional infrastructure. This feature significantly reduces both initial and long-term costs, making it an economically attractive solution.

Reduced On-Site Activity

The system is designed to enable a significant portion of the work to be completed off-site, which greatly decreases the extent of on-site operations. This approach not only simplifies project management but also helps minimise disruptions to ongoing activities during the construction phase.

Accelerated timeline

The implementation of this solution considerably shortened the overall project duration by eliminating the need for the time-consuming installation of 7 km of new troughing and cabling. This process would have required extensive planning for access and additional time for execution.

A key advantage was the ability to conduct most work off-site, minimising on-site activities and reducing disruptions during construction. This feature simplified project management and accelerated the timeline by avoiding the complex process of laying new cables. Cost-effectiveness was another benefit, as the system reduced overall expenses by using existing infrastructure. Furthermore, fewer civil engineering tasks meant lower risk of delays, particularly during final commissioning. The proven reliability of Frauscher's technology, backed by successful past implementations, reinforced the client's confidence in choosing this solution for the project.

Similar Projects
This might also interest you
1/5
Data TransmissionIndia

South Central Railway

The Vijayawada Division of Indian Railways introduced a new train detection system with data transmission functionality to overcome the challenges of the existing BPAC and conventional quad cable-based systems. Frauscher implemented the Frauscher Advanced Counter FAdC®, featuring full redundancy, advanced reset mechanisms and remote diagnostics. This upgrade delivers significant cost savings and enhanced system availability for the operator.
Train DetectionUnited Kingdom of Great Britain and Northern Ireland

Maintaining the past, creating the future

The Dean Forest Railway (DFR) operates a historical 7 km passenger service line running north from Lydney Junction to Parkend, in the Forest of Dean. Due to extensions of the line and an additional turnout being added at Parkend, an update and modernisation of the existing train detection and signalling system was necessary. Being a heritage railway, it requires high standards in terms of signalling and safety, whilst maintaining the historical touch of the line.
Train DetectionChina

CBTC Fallback System on Beijing Metro Lines

Beijing metro, one of the busiest lines in the world, was Frauscher’s very first assignment when entering the Chinese market. Due to its utilised capacity, it requires a great level of stability, reliability and performance of the entire signalling system. The Communication Based Train Control System (CBTC) applied here relies on a backup system consisting of fixed automatic train detection systems. Axle counting systems from Frauscher are perfectly suited for the accurate operation of such stand-by systems.
Train DetectionUnited Kingdom of Great Britain and Northern Ireland

Churnet Valley Heritage Railway

The Churnet Valley Heritage Railway preserves England's rich heritage of steam-powered rail transport.
Train DetectionChina

Tram Huangpu Line 1

Tram Huangpu Line 1 (HP1) line is located in urban areas with high traffic density and passenger volume as well as many level crossings. The adverse weather conditions can cause flooding of the track bed and add to the challenges for reliable system availability and operations.