Frauscher Sensor Technology has completed the divestiture to Wabtec Corporation.

Find Out More
Kokkola | Finland
Train DetectionFinland

Kokkola

Operator
Finnish Transport Infrastructure Agency
Country
Finland
Partner
Mipro
Segment
Main & Regional Line
Application
Track Vacancy Detection
Products
RSR123, FAdC®
Protocols
Frauscher Safe Ethernet FSE
Year
2019
Scope of project
275 sensors on open line 75 sensors in Ylivieska station

Frauscher supplied one of Finland’s busiest railway lines with new axle counters. The line was extended from a single to a double track section and Mipro was looking for a solution which can interface with their interlocking system in an efficient and cost effective way. Other important criteria was a minimum maintenance requirement and outdoor equipment which can cope with the harsh environmental conditions in Finland.

The railway section between Kokkola and Ylivieska is one of Finland’s busiest lines where trains reach up to 200 km/h. Environmental conditions in Finland are harsh: heavy snow and extreme cold temperatures are common during winter.

The Finnish Transport Agency planned to extend the railway section between Kokkola and Ylivieska from a single to a double track section. This project was one of the most comprehensive signalling system projects ever conducted in Finland. Obviously, the project needed to be performed without affecting the regular train operation.

The Frauscher Wheel Sensor RSR123 has proven its reliability even under harshest environmental conditions and combined with the Frauscher Advanced Counter FAdC®, it was the system of choice for this project. This combination allows to detect high speed trains under the very demanding environment given on this line. Using the Frauscher Safe Ethernet FSE protocol significantly sped up the installation and reduced the costs for the entire project. Based on training, the customer was able to configure the system by themselves – thanks to the open interfaces and configuration process.

Saving costs by realising mixed architectures

The FAdC® indoor equipment is located in numerous signaling shelters along the track. This saves massive costs in terms of cabling requirements due to short distances from the sensor to the evaluation board.

System status always on screen

The Frauscher Diagnostic System FDS allows remote access to valuable data for planning and conduction of preventive and predictive maintenance work.

Similar Projects
This might also interest you
1/5
Train DetectionChina

Beijing Metro Line 12

The Beijing Metro Line 12 is the first metro line that combines Frauscher Advanced Counter FAdC® and Railway Signal Safety Protocol Type I (RSSP-I). The line (from Sijiqingqiao Station to Dongbabei Station) was placed into full operation on 15 December 2024.
Train Detection, ServicesIndia

Sini - Chandil Railway Line

The Sini-Chandil railway line is a crucial rail connection located in the state of Jharkhand, which lies in the eastern coastal region of India. This railway line holds significant strategic importance for the entire region, and now incorporates Frauscher solutions, including the Frauscher Advanced Counter FAdC®, Wheel Sensor RSR180 and the Frauscher Insights applications Diagnostics and Motion.
Train DetectionUnited States of America

Tracking Trains in Houston

Houston MetroRail (METRO for short) is comprised of three light-rail lines covering 22 miles. Two-car, low-floor trainsets are powered by overhead catenary and operated on a mix of rail types, including embedded, grooved, concrete, and ballasted track. Harsh weather conditions such as extreme heat, humidity, and storms with heavy rains causing floods are typical for Houston. Combined with the variable track structure this caused significant malfunctions of the wheel sensors of METRO’s signalling system.
Train DetectionFrance

Axle counting adds fail-safe control to laser diagnostics

When MERMEC set out to install a laser-based Wheel Profile Measurement System in close proximity to the Eurotunnel, they faced a critical challenge: how to avoid unintended laser exposure without compromising the system’s ability to inspect up to 200 trains per day. To meet these requirements, MERMEC partnered with Frauscher.
Train DetectionChina

CBTC Fallback System on Beijing Metro Lines

Beijing metro, one of the busiest lines in the world, was Frauscher’s very first assignment when entering the Chinese market. Due to its utilised capacity, it requires a great level of stability, reliability and performance of the entire signalling system. The Communication Based Train Control System (CBTC) applied here relies on a backup system consisting of fixed automatic train detection systems. Axle counting systems from Frauscher are perfectly suited for the accurate operation of such stand-by systems.