South Central Railway | India
data-transmissionIndia

South Central Railway

Operator
South Central Railway
Country
India
Partner
Progressive Engineering Enterprises
Segment
Main & Regional Line
Application
Data Transmission
Year
08/2021
Scope of project
FAdC® with Data Transmission functionality, Wheel Sensor RSR180 and FDS

The Vijayawada Division of Indian Railways introduced a new train detection system with data transmission functionality to overcome the challenges of the existing BPAC and conventional quad cable-based systems. Frauscher implemented the Frauscher Advanced Counter FAdC®, featuring full redundancy, advanced reset mechanisms and remote diagnostics. This upgrade delivers significant cost savings and enhanced system availability for the operator.

The Vijayawada Division Intermediate Block Section projects aimed to upgrade and transform the division with a modern signalling system. Using Frauscher Advanced Counter FAdC®, with data transmission functionality, the division was able to improve reliability and efficiency.

The project covered 24 intermediate block sections over approximately 264 kilometres and 360 detection points.

The SIL 4-compliant, FAdC® was chosen for this project due its benefits in solving the challenges faced by the customer. The solution integrates advanced features such as dual detection, full redundancy, Supervisor Track Section (STS) auto-reset, and Counting Head Control (CHC), ensuring high availability and safety. The data transmission functionality also enabled secure transmission of both vital (track vacancy, signal control) and non-vital (signal status, alarm) information via a dual-path network using optical fiber and redundant quad cables.

Pre-wired cubicles and easy installation of RSR180 ensured minimal on-site disruption. Furthermore, the Frauscher Diagnostic System (FDS) was integrated with Indian Railway’s RailNet network, which allowed real-time web-based remote monitoring.

This upgrade project not only reduced operational costs and maintenance needs but also created a future-ready, modular infrastructure capable of supporting ongoing digital transformation in Indian Railways.

Dual detection with full redundancy

Fully redundant setup with a relay interface (IO-EXB), ensuring fail-safe train detection.

Data transmission

Uninterrupted data flow of both vital and non-vital information.

Remote diagnostics and monitoring

Real-time remote diagnostics, enabling proactive maintenance and rapid issue solving.

Reduced maintenance

Reduced maintenance requirements throughout the system’s lifecycle.

Similar Projects
This might also interest you
1/5
train-detectionAustria

GKB Graz-Köflacher Bahn

The operator of the Graz-Köflach line has made substantial modernisations to the network, choosing a decentralised system architecture and the EULYNX standardised interface. In this case, it was crucial that the new system would ensure a seamless transition from the previous parallel interface for relay systems to EULYNX.
train-detectionSpain

Three-rail Castellbisbal

The dual-gauge system of the Spanish railway network is quite challenging in terms of track vacancy detection: Wheel sensors must be installed on two rails next to each other in tight spaces and have to detect axles reliably on the respective rail. Frauscher developed a solution which copes also with the complexity of different interlocking technology in the stations along the line.
train-detectionUnited Kingdom of Great Britain and Northern Ireland

Wherry Lines

The Wherry Lines are railway branch lines in East Anglia in the East of England, linking Norwich – Great Yarmouth – Lowestoft. The project aimed to integrate Frauscher Advanced Counter FAdC into two external systems to mitigate against a train passing a red signal without authority on approach to level crossings.
train-detectionUnited States of America

Reducing Delays in a Metro (subway) Environment

A large metro operator was researching ways to reduce bottlenecks that were causing significant delays at a busy station. With two routes dividing in close proximity to the station and a complex auto-routing system that required the use of a 30-second timer to release switches, trains would frequently back up when approaching the station.
train-detectionChina

Chengdu Tram Line 2

Chengdu Tram Line, located in the capital Chengdu City of Sichuan Province, is the first tram line to be operational in the city since 2018.