South Central Railway | India
data-transmissionIndia

South Central Railway

Operator
South Central Railway
Country
India
Partner
Progressive Engineering Enterprises
Segment
Main & Regional Line
Application
Data Transmission
Year
08/2021
Scope of project
FAdC® with Data Transmission functionality, Wheel Sensor RSR180 and FDS

The Vijayawada Division of Indian Railways introduced a new train detection system with data transmission functionality to overcome the challenges of the existing BPAC and conventional quad cable-based systems. Frauscher implemented the Frauscher Advanced Counter FAdC®, featuring full redundancy, advanced reset mechanisms and remote diagnostics. This upgrade delivers significant cost savings and enhanced system availability for the operator.

The Vijayawada Division Intermediate Block Section projects aimed to upgrade and transform the division with a modern signalling system. Using Frauscher Advanced Counter FAdC®, with data transmission functionality, the division was able to improve reliability and efficiency.

The project covered 24 intermediate block sections over approximately 264 kilometres and 360 detection points.

The SIL 4-compliant, FAdC® was chosen for this project due its benefits in solving the challenges faced by the customer. The solution integrates advanced features such as dual detection, full redundancy, Supervisor Track Section (STS) auto-reset, and Counting Head Control (CHC), ensuring high availability and safety. The data transmission functionality also enabled secure transmission of both vital (track vacancy, signal control) and non-vital (signal status, alarm) information via a dual-path network using optical fiber and redundant quad cables.

Pre-wired cubicles and easy installation of RSR180 ensured minimal on-site disruption. Furthermore, the Frauscher Diagnostic System (FDS) was integrated with Indian Railway’s RailNet network, which allowed real-time web-based remote monitoring.

This upgrade project not only reduced operational costs and maintenance needs but also created a future-ready, modular infrastructure capable of supporting ongoing digital transformation in Indian Railways.

Dual detection with full redundancy

Fully redundant setup with a relay interface (IO-EXB), ensuring fail-safe train detection.

Data transmission

Uninterrupted data flow of both vital and non-vital information.

Remote diagnostics and monitoring

Real-time remote diagnostics, enabling proactive maintenance and rapid issue solving.

Reduced maintenance

Reduced maintenance requirements throughout the system’s lifecycle.

Similar Projects
This might also interest you
1/5
train-detectionFrance

Homologation for the Île-de-France tramway network

The network of Île-de-France tramways in the region of Paris has been a showcase model of public transport since the line T1 opened in 1992. Over a million passengers use these trams daily and today, the system consists of 11 lines covering over 100 kilometres of track. Over the next years it is planned to expand this network even further. For track vacancy detection, the Frauscher axle counting system is considered as being the ideal solution for this comprehensive network.
train-detectionIndia

Ensuring reliable rail operations across India´s longest rail-road bridge

The Bogibeel Bridge is India’s longest rail-road bridge that connects Assam and Arunachal Pradesh, carrying both rail and road traffic across the Brahmaputra River. Harsh environmental conditions and structural constraints made conventional signalling unworkable. The Frauscher Advanced Counter FAdC® axle counting system was selected for its proven reliability and low maintenance under these challenging conditions.
train-detectionUnited States of America

Charlotte Area Transit System (CATS) Supplementing Audio Frequency Track Circuits with Axle Counters

At the Charlotte Area Transit System, frequent false red signal overruns resulted when electromagnetic interference caused “bobbing” of the line’s audio frequency track circuits. The Frauscher Advanced Counter FAdC® was subsequently considered as an alternative to these track circuits to eliminate the occurrence of false red signal overruns.
train-detectionChina

Beijing Metro Line 12

The Beijing Metro Line 12 is the first metro line that combines Frauscher Advanced Counter FAdC® and Railway Signal Safety Protocol Type I (RSSP-I). The line is currently under construction and expected to be put into operation at the end of 2024.
train-detectionFinland

Kokkola

Frauscher supplied one of Finland’s busiest railway lines with new Axle Counters. The line was extended from a single to a double track section and Mipro was looking for a solution which can interface with their interlocking system in an efficient and cost effective way.