Tracking Trains in Houston | USA
train-detectionUnited States of America

Tracking Trains in Houston | USA

Operator
MTA Houston
Country
United States of America
Partner
MEC Mass Electric Corp.
Segment
Main & Regional Line
Application
Track Vacancy Detection
Products
FAdC®, RSR180
Year
2016
Scope of project
565 wheel sensors, 103 equipment locations

Houston MetroRail (METRO for short) is comprised of three light-rail lines covering 22 miles. Two-car, low-floor trainsets are powered by overhead catenary and operated on a mix of rail types, including embedded, grooved, concrete, and ballasted track. Harsh weather conditions such as extreme heat, humidity, and storms with heavy rains causing floods are typical for Houston. Combined with the variable track structure this caused significant malfunctions of the wheel sensors of METRO’s signalling system.

In order to improve the system, METRO conducted trial installations with several suppliers of axle counter solutions to demonstrate features and the overall performance of their respective products. Due to the complicated track structure and environmental conditions, Frauscher quickly understood that the required wheel sensors had to be simple to install, immune to extreme heat as well as waterproof as floods could easily occur. The trial results demonstrated that the Frauscher Advanced Counter FAdC® met all of METRO’s requirements in terms of environmental influences, interfaces, reliability and seamless integration into the existing infrastructure.

The flexible design of the FAdC® allows efficient data transfer via relay interface to the traffic control system and interlocking. Additionally, two optional intelligent functions, Supervisor Track Sections and Counting Head Control, were used to counter the effects of unexpected influences such as metallic debris. The installed Frauscher Wheel Sensor RSR180 is extremely robust and not affected by any environmental influences.

In total, 565 Wheel Sensors RSR180 were installed along the rail line, and the axle counter Frauscher Advanced Counter FAdC® in 103 locations throughout the network to guarantee a flawless operation of the line.

Excellent match of requirements

The Frauscher axle counting solution met all of METRO’s environmental, interface and reliability requirements. The straightforward installation and smooth transition from the existing train detection system was highly appreciated by the operator.

Reduction of costs

The new system caused a significant reduction in down time and maintenance costs, which will continue to add up over the lifecycle of the system. The additional smart functionalities that were implemented increased the availability of the system even further.

Similar Projects
This might also interest you
1/5
train-detectionChina

Fenghuang Maglev | China

Fenghuang Maglev is a medium-low speed maglev rapid transit line. Since maglev trains do not have wheels, traditional wheel-based detection systems cannot be directly applied to maglev traffic engineering.
train-detectionFinland

Kokkola | Finland

Frauscher supplied one of Finland’s busiest railway lines with new Axle Counters. The line was extended from a single to a double track section and Mipro was looking for a solution which can interface with their interlocking system in an efficient and cost effective way.
train-detectionUnited Kingdom of Great Britain and Northern Ireland

Maintaining the past, creating the future | UK

The Dean Forest Railway (DFR) operates a historical 7 km passenger service line running north from Lydney Junction to Parkend, in the Forest of Dean. Due to extensions of the line and an additional turnout being added at Parkend, an update and modernisation of the existing train detection and signalling system was necessary. Being a heritage railway, it requires high standards in terms of signalling and safety, whilst maintaining the historical touch of the line.
train-detectionUnited States of America

Reducing Delays in a Metro (subway) Environment | USA

A large metro operator was researching ways to reduce bottlenecks that were causing significant delays at a busy station. With two routes dividing in close proximity to the station and a complex auto-routing system that required the use of a 30-second timer to release switches, trains would frequently back up when approaching the station.
train-detectionUnited Kingdom of Great Britain and Northern Ireland

London to Corby | UK

The project was part of Network Rail’s Midland Main line electrification programme and involved re-signalling between Bedford and Kettering. The goal is the reduction of industry costs and environmental benefits through lighter rolling stock, reduced fuel costs and lower carbon emissions.