South Central Railway | India
data-transmissionIndia

South Central Railway | India

Operator
South Central Railway
Country
India
Partner
Progressive Engineering Enterprises
Segment
Main & Regional Line
Application
Data Transmission
Year
08/2021
Scope of project
FAdC® with Data Transmission functionality, Wheel Sensor RSR180 and FDS

The Vijayawada Division of Indian Railways introduced a new train detection system with data transmission functionality to overcome the challenges of the existing BPAC and conventional quad cable-based systems. Frauscher implemented the Frauscher Advanced Counter FAdC®, featuring full redundancy, advanced reset mechanisms and remote diagnostics. This upgrade delivers significant cost savings and enhanced system availability for the operator.

The Vijayawada Division Intermediate Block Section projects aimed to upgrade and transform the division with a modern signalling system. Using Frauscher Advanced Counter FAdC®, with data transmission functionality, the division was able to improve reliability and efficiency.

The project covered 24 intermediate block sections over approximately 264 kilometres and 360 detection points.

The SIL 4-compliant, FAdC® was chosen for this project due its benefits in solving the challenges faced by the customer. The solution integrates advanced features such as dual detection, full redundancy, Supervisor Track Section (STS) auto-reset, and Counting Head Control (CHC), ensuring high availability and safety. The data transmission functionality also enabled secure transmission of both vital (track vacancy, signal control) and non-vital (signal status, alarm) information via a dual-path network using optical fiber and redundant quad cables.

Pre-wired cubicles and easy installation of RSR180 ensured minimal on-site disruption. Furthermore, the Frauscher Diagnostic System (FDS) was integrated with Indian Railway’s RailNet network, which allowed real-time web-based remote monitoring.

This upgrade project not only reduced operational costs and maintenance needs but also created a future-ready, modular infrastructure capable of supporting ongoing digital transformation in Indian Railways.

Dual detection with full redundancy

Fully redundant setup with a relay interface (IO-EXB), ensuring fail-safe train detection.

Data transmission

Uninterrupted data flow of both vital and non-vital information.

Remote diagnostics and monitoring

Real-time remote diagnostics, enabling proactive maintenance and rapid issue solving.

Reduced maintenance

Reduced maintenance requirements throughout the system’s lifecycle.

Similar Projects
This might also interest you
1/5
train-detectionIndia

Jhansi - Bina Railway Line | India

The Jhansi-Bina railway line is a strategically important line which belongs to North Central Railway and is in Uttar Pradesh. Initially, the line featured analogue axle counters for detecting trains in individual track sections as well as a DC track circuit train detection system in less congested areas.
train-detectionUnited Kingdom of Great Britain and Northern Ireland

London to Corby | UK

The project was part of Network Rail’s Midland Main line electrification programme and involved re-signalling between Bedford and Kettering. The goal is the reduction of industry costs and environmental benefits through lighter rolling stock, reduced fuel costs and lower carbon emissions.
servicesAustria

Salzburger Lokalbahn | Austria

Frauscher supported the Salzburger Lokalbahn, a regional railway in Austria, with a service assignment that included both the maintenance of Frauscher wheel sensors and axle counters as well as hands-on training for the installation personnel. The customer benefited from efficient troubleshooting and tailored training delivered directly on their own equipment.
train-detectionChina

CBTC Fallback System on Beijing Metro Lines | China

Beijing metro, one of the busiest lines in the world, was Frauscher’s very first assignment when entering the Chinese market. Due to its utilised capacity, it requires a great level of stability, reliability and performance of the entire signalling system. The Communication Based Train Control System (CBTC) applied here relies on a backup system consisting of fixed automatic train detection systems. Axle counting systems from Frauscher are perfectly suited for the accurate operation of such stand-by systems.
train-detectionSerbia

Hungary-Serbia Railway Project | Serbia

The Hungary-Serbia Railway Project is an iconic project of the “One Belt One Road” Initiative between China and CEE countries. Frauscher provides not only high-quality solutions but also detailed technical support and clarification.