Frauscher Sensor Technology has completed the divestiture to Wabtec Corporation.

Find Out More
Beijing Metro Line 12 | China
Train DetectionChina

Beijing Metro Line 12

Operator
Beijing Metro
Country
China
Segment
Urban
Application
Track Vacancy Detection
Products
RSR180, FAdC®
Protocols
Proprietary protocols
Year
2024
Scope of project
Approx. 263 counting heads

The Beijing Metro Line 12 is the first metro line that combines Frauscher Advanced Counter FAdC® and Railway Signal Safety Protocol Type I (RSSP-I). The line (from Sijiqingqiao Station to Dongbabei Station) was placed into full operation on 15 December 2024.

Beijing Metro Line 12 is a metro project in northern Beijing. It is 27.5 km long with 20 stations, located in one of the busiest commuting areas, connecting four major urban districts. It is the first metro line that uses the Frauscher Advanced Counter FAdC® with software interface as a CBTC fallback system in Beijing.

Furthermore, following the combination of the Frauscher Communication board (COM) and the Railway Signal Safety Protocol (RSSP) that has been implemented successfully in Huangpu Tram T1 of Guangzhou and the Fenghuang Maglev Line in Hunan Province, Line 12 is also the first metro line that uses this proven technology.

The RSSP is mentioned in the standard specification for the Chinese railway industry, which has been commonly applied for data transmission in the CBTC system. Frauscher’s technical team has developed the communication board that supports the RSSP protocol (COM-RSSP) and successfully obtained the CENELEC SIL 4 Certification two years ago.

Software interface

Frauscher Advanced Counter FAdC® is able to communicate with higher-level systems via the Ethernet interface using customised protocols. The protocols RSSP and FSFB have been used in China.

Installation friendly

The tail cable of Wheel Sensor RSR180 and Frauscher Rail Claw SK150 are specially designed for easy installation without track drilling.

Similar Projects
This might also interest you
1/5
Train DetectionCanada

Toronto Transit Commission

The Toronto Transit Commission (TTC) Line 1 Yonge-University is Toronto’s longest subway line, with track circuits utilized for signalling. Due to an increasing number of daily passengers and an aged system the need for upgrading without interfering with the daily operations became readily apparent. It was further required that the new signalling system functions independently of the existing system. It would provide CBTC fallback functionalities, and work as an overlay to the current track circuit-based system.
Train DetectionIndia

Increasing Availability at Adra Yard

Adra Yard belongs to the Southeastern Railway Zone of Indian Railways and is in West Bengal. Initially the yard was equipped with track circuits and there was a requirement to get them replaced with the Frauscher Advanced Counter FAdC®. This project is one of Frauscher’s esteemed Indian Railway Projects with a coverage of 139 counting heads and 97 track sections.
Data TransmissionUnited Kingdom of Great Britain and Northern Ireland

Headbolt Lane to Rainford Project

As part of the project to expand Merseyrail services, the operator needed to address the challenge of transmitting indication information over a specific section, spanning from Headbolt Lane to Rainford. In this instance, Frauscher’s technology was utilised to fulfill the data transmission requirements of this project, avoiding expensive and time consuming cabling that would have otherwise been required.
Train DetectionUnited Kingdom of Great Britain and Northern Ireland

The Borders Railway Project

From Shawfair to Tweedbank, the Borders Railway rail route underwent significant renovations after 45 years of disconnect due to Beeching cuts. Our Frauscher UK & Ireland team were involved in providing innovative solutions for train detection for a section of the Borders Railway route.
Train DetectionUnited States of America

Charlotte Area Transit System (CATS) Supplementing Audio Frequency Track Circuits with Axle Counters

At the Charlotte Area Transit System, frequent false red signal overruns resulted when electromagnetic interference caused “bobbing” of the line’s audio frequency track circuits. The Frauscher Advanced Counter FAdC® was subsequently considered as an alternative to these track circuits to eliminate the occurrence of false red signal overruns.