Western Dedicated Freight Corridor (Rewari – Makarpura) | India
train-detectionIndia

Western Dedicated Freight Corridor (Rewari – Makarpura) | India

Operator
Dedicated Freight Corridor Cooperation India Limited
Country
India
Partner
Hitachi India Pvt. Ltd.
Segment
Freight Line
Application
Track Vacancy Detection
Products
RSR180, FAdC®
Year
2016
Scope of project
4516 counting heads

The Western Dedicated Freight Corridor (WDFC) represents one of the most strategically significant freight transportation projects in India. By facilitating the seamless transport of goods between major economic hubs, the intention is that the WDFC will significantly boost economic growth and development in the local region and beyond, further underlying the importance of this project.

As part of WDFC's ambitious objectives, the Dedicated Freight Corridor Corporation of India Limited (DFCCIL) sought a modern and reliable track vacancy detection system, capable of ensuring minimal downtime and optimised traffic flow, contributing to smooth and efficient rail operations.

After careful consideration, the Frauscher Advanced Counter FAdC® was selected due to the many benefits that the system presents for operators. The FAdC® fully adheres to the stringent safety requirements stipulated by Safety Integrity Level 4, making it an ideal solution for vital applications, including track vacancy detection. Furthermore, its high levels of availability and reliability contribute to an increased network uptime which in turn saves significant resources for the operator. In this case, the integration of the FAdC® into higher ranking systems including Hitachi’s electronic interlocking is done via a serial interface using the COM-FSE protocol, eliminating the usage of relays and additional wiring which reduces the overall cost, system complexity and maintenance requirements.

Seamless integration into existing systems

Frauscher Advanced Counter FAdC® was integrated quickly and easily into Hitachi’s electronic interlocking via a serial interface using the COM-FSE protocol. This has eliminated the usage of relays and additional wiring which reduces the overall cost and project complexity.

Highly resistant to adverse weather and track conditions

Wheel Sensor RSR180 functions even in adverse weather and environmental conditions with frequent flooding at the trackside.

Exhaustive technical service

Frauscher provides not only high-performance products but also detailed technology clarification and on-site training.

This project is designed according to a distributed architecture, which again significantly diminishes the necessity for extra cabling, thus lowering the overall costs. This cost saving is especially notable due to the total size of the project, featuring 4,516 counting heads. This is a unique project as a large number of counting heads are connected on one common industrial ethernet network configured for redundancy and high availability using modern networking technology. This also demonstrates Frauscher’s capability to design, configure, integrate and deliver such a large project with speed, ease and quality. 

In this instance, the FAdC® was chosen in conjunction with the Frauscher Wheel Sensor RSR180 which is not only renowned for its safety in line with SIL 4 requirements, but also overall reliability, as it is used in projects worldwide with proven success. One notable benefit of the RSR180 is its resistance to adverse weather conditions such as high humidity and temperature, as well as challenging track conditions including dirt, dust and debris. The sensor also holds IP68 rating against water ingress, making it ideal for projects with frequent flooding at the trackside. The installation of the RSR180 sensors was made easy and convenient thanks to the patented Frauscher Rail Claw SK140, which eradicated the need for any drilling into the rail. Consequently, the overall cost of installation and dwell time of staff on site was significantly reduced.

Similar Projects
This might also interest you
1/5
train-detectionChina

Chengdu Tram Line 2 | China

Chengdu Tram Line, located in the capital Chengdu City of Sichuan Province, is the first tram line to be operational in the city since 2018.
train-detectionCanada

Toronto Transit Commission | Canada

The Toronto Transit Commission (TTC) Line 1 Yonge-University is Toronto’s longest subway line, with track circuits utilized for signalling. Due to an increasing number of daily passengers and an aged system the need for upgrading without interfering with the daily operations became readily apparent. It was further required that the new signalling system functions independently of the existing system. It would provide CBTC fallback functionalities, and work as an overlay to the current track circuit-based system.
train-detectionFrance

Homologation for the Île-de-France tramway network | France

The network of Île-de-France tramways in the region of Paris has been a showcase model of public transport since the line T1 opened in 1992. Over a million passengers use these trams daily and today, the system consists of 11 lines covering over 100 kilometres of track. Over the next years it is planned to expand this network even further. For track vacancy detection, the Frauscher axle counting system is considered as being the ideal solution for this comprehensive network.
train-detectionUnited Kingdom of Great Britain and Northern Ireland

Axle Counter Overlay System | UK

Between London St Pancras International Station and Farringdon Station, there is a history of frequent flooding through the tunnels that adversely affected the reliability of the existing train detection system. Due to this, the installation was non-operational during large periods. However, being a mainline section and a core route through London, high reciliation to any sort of failures is vital.
train-detectionKazakhstan

FAdC® at Vhodnaya Station | Kazakhstan

ArcelorMittal is responsible for the operation of a dedicated industrial railway infrastructure located in Temirtau, Kazakhstan. At Vhodnaya station, an essential shunting yard, various goods and materials, such as polyester, zinc, aluminium, sinter, iron ore, and coke-chemical products, are loaded and unloaded. The station's robust infrastructure features 64 switching points and 68 signals, necessitating the use of a high-performing train detection system to ensure the safe and efficient management of traffic flow.