GKB Graz-Köflacher Bahn | Austria
train-detectionAustria

GKB Graz-Köflacher Bahn

Operator
GKB
Country
Austria
Partner
Siemens
Segment
Main & Regional Line
Application
Track Vacancy Detection
Products
FAdC®, RSR123
Protocols
EULYNX
Year
2019

The operator of the Graz-Köflacher Bahn has made substantial modernisations to the network, choosing a decentralised system architecture and the EULYNX standardised interface. In this case, it was crucial that the new system would ensure a seamless transition from the previous parallel interface for relay systems to EULYNX.

The regional railway in the Graz-Köflach area is an important and heavily used transport link in Western Styria, Austria. The intention of the operator was to expand and modernise the line which included the installation of a new train detection system and interlocking.

In order to fulfill the requirements of the operator for a safe, available and reliable train detection system, the Frauscher Advanced Counter FAdC®, in conjunction with Frauscher wheel sensors were chosen. The FAdC® was selected due to its optimal performance and robustness, coupled with high levels of reliability, consistent availability and minimum downtime or service interruptions, among other benefits.

Seamless transition

During the commissioning phase, a seamless transition between the relay based system and the new EULYNX system was ensured as they ran in parallel, until the new EULYNX based interlocking system was fully implemented.

Greater degree of flexibility

Thanks to EULYNX, the different lifecycles of interlocking components are decoupled, meaning they can be replaced independently of the manufacturer.

Highly available and reliable operation

Thanks to the implementation of the renowned Frauscher Advanced Counter FAdC® highly reliable and available rail operations are guaranteed, alongside minimal maintenance costs.

To ensure a resilient and future-ready solution, the railway operator chose to establish the system according to a decentralised architecture, based on a serial interface that adheres to EULYNX Baseline 2.0 standards. The new system also needed to provide an easy transition from the existing relay system to EULYNX, guaranteeing uninterrupted availability of railway operations during the commissioning phase.

The FAdC® features the standardised EULYNX interface which made it possible to set up the decentralised system architecture and to ensure a smooth integration with any EULYNX-enabled interlocking systems. By implementing EULYNX, the operator benefits from greater flexibility, and by decoupling the various life cycles of the interlocking components, the system enables individual components to be replaced as required and independently of the manufacturer. Furthermore, the operator is also able to future-proof the system and accommodate any new changes and expansions in a simple and cost-efficient way.

Similar Projects
This might also interest you
1/5
train-detectionIndia

Jhansi - Bina Railway Line

The Jhansi-Bina railway line is a strategically important line which belongs to North Central Railway and is in Uttar Pradesh. Initially, the line featured analogue axle counters for detecting trains in individual track sections as well as a DC track circuit train detection system in less congested areas.
train-detectionIndia

Vijayawada – Gannavaram Rail Line

The Vijayawada – Gannavaram rail line belongs to South Central Railway and is situated in Andhra Pradesh. Initially, the line featured a conventional signalling system and there was a requirement by the operator to update this into an automatic signalling system with the Frauscher Advanced Counter FAdC®.
train-detectionChina

Tram Huangpu Line 1

Tram Huangpu Line 1 (HP1) line is located in urban areas with high traffic density and passenger volume as well as many level crossings. The adverse weather conditions can cause flooding of the track bed and add to the challenges for reliable system availability and operations.
train-detectionUnited States of America

Charlotte Area Transit System (CATS) Supplementing Audio Frequency Track Circuits with Axle Counters

At the Charlotte Area Transit System, frequent false red signal overruns resulted when electromagnetic interference caused “bobbing” of the line’s audio frequency track circuits. The Frauscher Advanced Counter FAdC® was subsequently considered as an alternative to these track circuits to eliminate the occurrence of false red signal overruns.
train-detectionPoland

Metro Warsaw

Metro Warsaw was looking for an alternative to track circuits for the line M2, to increase the availability of public transport by using reliable signalling technology. In the end, the operator even decided to replace the existing track circuits on line M1 with the Frauscher Axle Counter ACS200.