Frauscher Sensor Technology has completed the divestiture to Wabtec Corporation.

Find Out More
Charlotte Area Transit System (CATS) Supplementing Audio Frequency Track Circuits with Axle Counters | USA
Train DetectionUnited States of America

Charlotte Area Transit System (CATS) Supplementing Audio Frequency Track Circuits with Axle Counters

Operator
Charlotte Area Transit System
Country
United States of America
Partner
HNTB
Segment
Metro
Application
Level Crossing Protection
Products
FAdC®, RSR180
Year
2022
Scope of project
6 counting heads

At the Charlotte Area Transit System, frequent false red signal overruns resulted when electromagnetic interference caused “bobbing” of the line’s audio frequency track circuits. The Frauscher Advanced Counter FAdC® was subsequently considered as an alternative to these track circuits to eliminate the occurrence of false red signal overruns.

The operators of the Charlotte Area Transit System, at the advice of consultant HNTB, agreed to utilise the FAdC® for a shadow mode trial to determine if it would solve its prevalent issue of false red signal overruns. The main reason for consideration of the axle counter was its high immunity to the electromagnetic interference, which was causing this issue, as well as its ability to interoperate with the existing audio frequency track circuits. The trial was conducted at the Archdale Interlocking for nine and a half months, generating the expected positive results. The data indicated that although numerous events of track circuit “bobbing” occurred during the trial period and generated false overruns, the axle counter data showed that if it had been in service, these overruns would have been prevented.

The FAdC® was able to increase the availability and safety, ensuring consistent and smooth operation of this light rail line. The axle counters were then used to entirely replace the existing AF track circuits, after the vital testing was successfully completed and the personnel was fully trained. After finalisation of these important steps, the Frauscher Advanced Counter FAdC® was placed in revenue service.

Elimination of false red signal overruns

Protection against environmental conditions and electromagnetic interference

Similar Projects
This might also interest you
1/5
Train DetectionCanada

Edmonton Metro Line

The Edmonton Metro Line was experiencing significant issues with its newly installed Communications Based Train Control (CBTC) signalling system, which did not perform to the operator‘s expectations. The city was forced to run an incomplete schedule with reduced train speed and frequency which negatively affected commuters and the city of Edmonton in general. Finally in 2019, the operator decided to install a new system in cooperation with Frauscher.
Train DetectionAustria

GKB Graz-Köflacher Bahn

The operator of the Graz-Köflacher Bahn has made substantial modernisations to the network, choosing a decentralised system architecture and the EULYNX standardised interface. In this case, it was crucial that the new system would ensure a seamless transition from the previous parallel interface for relay systems to EULYNX.
Train DetectionFrance

Extension Line D Tram Bordeaux

The Bordeaux tramway was the first French tram system equipped with a Frauscher axle counting system, benefitting from the innovative management methods like Counting Head Control.
Train DetectionUnited Kingdom of Great Britain and Northern Ireland

Churnet Valley Heritage Railway

The Churnet Valley Heritage Railway preserves England's rich heritage of steam-powered rail transport.
Train DetectionIndia

Ensuring reliable rail operations across India´s longest rail-road bridge

The Bogibeel Bridge is India’s longest rail-road bridge that connects Assam and Arunachal Pradesh, carrying both rail and road traffic across the Brahmaputra River. Harsh environmental conditions and structural constraints made conventional signalling unworkable. The Frauscher Advanced Counter FAdC® axle counting system was selected for its proven reliability and low maintenance under these challenging conditions.