Charlotte Area Transit System (CATS) Supplementing Audio Frequency Track Circuits with Axle Counters | USA
train-detectionUnited States of America

Charlotte Area Transit System (CATS) Supplementing Audio Frequency Track Circuits with Axle Counters | USA

Operator
Charlotte Area Transit System
Country
United States of America
Partner
HNTB
Segment
Metro
Application
Level Crossing Protection
Products
FAdC®, RSR180
Year
2022
Scope of project
6 counting heads

At the Charlotte Area Transit System, frequent false red signal overruns resulted when electromagnetic interference caused “bobbing” of the line’s audio frequency track circuits. The Frauscher Advanced Counter FAdC® was subsequently considered as an alternative to these track circuits to eliminate the occurrence of false red signal overruns.

The operators of the Charlotte Area Transit System, at the advice of consultant HNTB, agreed to utilise the FAdC® for a shadow mode trial to determine if it would solve its prevalent issue of false red signal overruns. The main reason for consideration of the axle counter was its high immunity to the electromagnetic interference, which was causing this issue, as well as its ability to interoperate with the existing audio frequency track circuits. The trial was conducted at the Archdale Interlocking for nine and a half months, generating the expected positive results. The data indicated that although numerous events of track circuit “bobbing” occurred during the trial period and generated false overruns, the axle counter data showed that if it had been in service, these overruns would have been prevented.

The FAdC® was able to increase the availability and safety, ensuring consistent and smooth operation of this light rail line. The axle counters were then used to entirely replace the existing AF track circuits, after the vital testing was successfully completed and the personnel was fully trained. After finalisation of these important steps, the Frauscher Advanced Counter FAdC® was placed in revenue service.

Elimination of false red signal overruns

Protection against environmental conditions and electromagnetic interference

Similar Projects
This might also interest you
1/5
train-detectionKazakhstan

FAdC® at Uglerudnaya Station | Kazakhstan

AcelorMittal is the operator of the Uglerudnaya industrial railway station, located in Temirtau, Kazakhstan. The station features a total of 56 switches and 52 track sections to enable the smooth flow of train traffic. To ensure the safety of all trains, an interlocking system is used to establish secure routes for incoming, outgoing, and passing trains. This requires effective traffic management and a dependable train detection system to detect the presence of trains on the tracks.
train-detectionUnited Kingdom of Great Britain and Northern Ireland

Churnet Valley Heritage Railway | UK

The Churnet Valley Heritage Railway preserves England's rich heritage of steam-powered rail transport.
train-detectionSerbia

Hungary-Serbia Railway Project | Serbia

The Hungary-Serbia Railway Project is an iconic project of the “One Belt One Road” Initiative between China and CEE countries. Frauscher provides not only high-quality solutions but also detailed technical support and clarification.
train-detectionIndia

Increasing Availability at Adra Yard | India

Adra Yard belongs to the Southeastern Railway Zone of Indian Railways and is in West Bengal. Initially the yard was equipped with track circuits and there was a requirement to get them replaced with the Frauscher Advanced Counter FAdC®. This project is one of Frauscher’s esteemed Indian Railway Projects with a coverage of 139 counting heads and 97 track sections.
train-detectionChina

Beijing Metro Line 12 | China

The Beijing Metro Line 12 is the first metro line that combines Frauscher Advanced Counter FAdC® and Railway Signal Safety Protocol Type I (RSSP-I). The line is currently under construction and expected to be put into operation at the end of 2024.