Hungary-Serbia Railway Project | Serbia
train-detectionSerbia

Hungary-Serbia Railway Project | Serbia

Operator
JSC Serbian Railway
Country
Serbia
Partner
CRSC
Segment
Main & Regional Line
Application
Track Vacancy Detection
Products
RSR123, FAdC®
Protocols
Frauscher Safe Ethernet FSE
Year
2019

The Hungary-Serbia Railway Project is an iconic project of the “One Belt One Road” Initiative between China and CEE countries. Frauscher provides not only high-quality solutions but also detailed technical support and clarification.

The Hungary-Serbia Railway Project is an iconic project of the “One Belt One Road” Initiative between China and CEE countries. The railway runs from Belgrade, Serbia to Budapest, Hungary, spanning a total of 341.7 km. The project is taking place in Serbia. Currently, the section from Belgrade to Nov Sad has been put into operation in March 2022, with a maximum operating speed of 200km/h.

Frauscher supplied the Frauscher Advanced Counter FAdC® for this project, using the Frauscher Safe Ethernet FSE protocol. The wheel sensor RSR123 installed on the trackside proves a robust ability to EMI by its V.mix Technology® patent. Its pluggable cable also makes it easier to install and replace. Both the indoor and outdoor equipment significantly speed up the installation and reduced the costs for the entire project.

The transcontinental railway requires Chinese railroad equipment that aligns with the ETCS-L2 train control system standards of Europe and the Certificate of Technical Specification for Interoperability (TSI), a new requirement for Chinese equipment in the rail signalling field.

Frauscher has cooperated with China Railway Signal & Communication Group (CRSC) for 15 years. As an Austrian brand in the Chinese market, the Frauscher China team, Austrian headquarters, and CEE team worked closely together to play an indispensable role as a link between China and Europe in the process of aligning signalling technology standards, providing technical clarification support for customers to attain the TSI certificates and Serbian country approval.

Flexible configuration options

Frauscher Advanced Counter FAdC® is able to communicate with higher-level interlocking system via safety protocols, such as customized protocols and Frauscher Safety Ethernet FSE which is used in this project.

Highly resistant to electromagnetic interferences

Wheel Sensor RSR123 has a high ability to resist the EMI with its V.Mix Technology® patent. Its pluggable cable and Frauscher Rail Claw SK150 significantly reduce installation and maintenance costs.

Exhaustive technical service

Frauscher provides not only high-performance products but also detailed technology clarification and on-site training.

Similar Projects
This might also interest you
1/5
train-detectionIndia

Increasing Availability at Adra Yard | India

Adra Yard belongs to the Southeastern Railway Zone of Indian Railways and is in West Bengal. Initially the yard was equipped with track circuits and there was a requirement to get them replaced with the Frauscher Advanced Counter FAdC®. This project is one of Frauscher’s esteemed Indian Railway Projects with a coverage of 139 counting heads and 97 track sections.
train-detectionUnited States of America

Frauscher Track Vacancy System FTVS Testing | USA

During the initial development phase of the Frauscher Track Vacancy System FTVS, a number of pre-production units were released for real-world testing to examine their performance in typical yard environments. Consequently, several trials were conducted in the United States.
train-detectionUnited Kingdom of Great Britain and Northern Ireland

Maintaining the past, creating the future | UK

The Dean Forest Railway (DFR) operates a historical 7 km passenger service line running north from Lydney Junction to Parkend, in the Forest of Dean. Due to extensions of the line and an additional turnout being added at Parkend, an update and modernisation of the existing train detection and signalling system was necessary. Being a heritage railway, it requires high standards in terms of signalling and safety, whilst maintaining the historical touch of the line.
train-detectionUnited Kingdom of Great Britain and Northern Ireland

Axle Counter Overlay System | UK

Between London St Pancras International Station and Farringdon Station, there is a history of frequent flooding through the tunnels that adversely affected the reliability of the existing train detection system. Due to this, the installation was non-operational during large periods. However, being a mainline section and a core route through London, high reciliation to any sort of failures is vital.
train-detectionUnited States of America

Tracking Trains in Houston | USA

Houston MetroRail (METRO for short) is comprised of three light-rail lines covering 22 miles. Two-car, low-floor trainsets are powered by overhead catenary and operated on a mix of rail types, including embedded, grooved, concrete, and ballasted track. Harsh weather conditions such as extreme heat, humidity, and storms with heavy rains causing floods are typical for Houston. Combined with the variable track structure this caused significant malfunctions of the wheel sensors of METRO’s signalling system.