London to Corby | UK
Train DetectionUnited Kingdom of Great Britain and Northern Ireland

London to Corby

Operator
Network Rail
Country
United Kingdom of Great Britain and Northern Ireland
Partner
Siemens Mobility Limited
Segment
Main & Regional Line
Application
Track Vacancy Detection
Products
FAdC®, RSR123
Protocols
Proprietary protocols
Year
2020

The project was part of Network Rail’s Midland Main line electrification programme and involved re-signalling between Bedford and Kettering. The goal is the reduction of industry costs and environmental benefits through lighter rolling stock, reduced fuel costs and lower carbon emissions. Among others, the project included replacing existing Westpac and route relay interlockings with the Trackguard Westlock System as well as renewing the signalling equipment using the Trackguard Westrace Trackside System and Frauscher axle counters.

To replace the existing route relay interlocking with the Trackguard Westlock System, the Frauscher Advanced Counter FAdC® with RSR123 was implemented as the track vacancy detection system. To establish an interface with the Trackguard Westlock System, the track sections are output via the WNC failsafe ethernet protocol. The London to Corby project was set up with an A and a B Network. This guaranteed network redundancy for enhanced availability.

Since the RSR123 and the Frauscher Advanced Counter FAdC® do not require any trackside electronics, tail cables were connected to the signalling cable using Glenair plug couplers. Due to this, the amount of equipment trackside could be highly reduced. Trackside connection boxes were installed as installation and maintainer preference as well as plug couplers (i.e. head to Glenair plug coupler, coupler to dis box, dis-box to loc).

The RSR123 also complies with high standards in reliability and robustness which were required by the Network Rail Infrastructure.

Significant reduction of equipment

Tail cables could be directly connected to the signalling cable using plug couplers as no trackside electronics are needed when using the Frauscher technology. Furthermore, this led to a reduction of costs.

High standards in reliability

The RSR123 uses patented V.Mix Technology to ensure that it complies with high standards in reliability and robustness.

Similar Projects
This might also interest you
1/5
Train DetectionIndia

Jhansi - Bina Railway Line

The Jhansi-Bina railway line is a strategically important line which belongs to North Central Railway and is in Uttar Pradesh. Initially, the line featured analogue axle counters for detecting trains in individual track sections as well as a DC track circuit train detection system in less congested areas.
Train DetectionPoland

Metro Warsaw

Metro Warsaw was looking for an alternative to track circuits for the line M2, to increase the availability of public transport by using reliable signalling technology. In the end, the operator even decided to replace the existing track circuits on line M1 with the Frauscher Axle Counter ACS200.
Train DetectionTaiwan

Shalun Signaling

The Shalun Line is frequented by four-car-trains and located in the south of Taiwan. Tropical conditions with temperatures between 22 and 28 degrees and high humidity are not the only challenge the Frauscher Axle Counter Solution has to deal with.
Train DetectionSpain

Three-rail Castellbisbal

The dual-gauge system of the Spanish railway network is quite challenging in terms of track vacancy detection: Wheel sensors must be installed on two rails next to each other in tight spaces and have to detect axles reliably on the respective rail. Frauscher developed a solution which copes also with the complexity of different interlocking technology in the stations along the line.
Train DetectionUnited States of America

Reducing Delays in a Metro (subway) Environment

A large metro operator was researching ways to reduce bottlenecks that were causing significant delays at a busy station. With two routes dividing in close proximity to the station and a complex auto-routing system that required the use of a 30-second timer to release switches, trains would frequently back up when approaching the station.