Beijing Metro Line 12 | China
train-detectionChina

Beijing Metro Line 12 | China

Operator
Beijing Metro
Country
China
Segment
Urban
Application
Track Vacancy Detection
Products
RSR180, FAdC®
Protocols
Proprietary protocols
Year
2023
Scope of project
Approx. 263 counting heads

The Beijing Metro Line 12 is the first metro line that combines Frauscher Advanced Counter FAdC® and Railway Signal Safety Protocol Type I (RSSP-I). The line is currently under construction and expected to be put into operation at the end of 2024.

Beijing Metro Line 12 is a metro project in northern Beijing. It is 29,6 km long with 21 stations, located in one of the busiest commuting areas, connecting four major urban districts. The project is estimated to be put into operation at the end of 2024. It is the first metro line that uses Frauscher Advanced Counter FAdC® as the fallback system of CBTC in Beijing.

Furthermore, following the combination of the Frauscher Communication board (COM) and the Railway Signal Safety Protocol (RSSP) that has been implemented successfully in Huangpu Tram T1 of Guangzhou and the Fenghuang Maglev Line in Hunan Province, Line 12 is also the first metro line that uses this proven technology.

The RSSP is mentioned in the standard specification for the Chinese railway industry, which has been commonly applied for data transmission in the CBTC system. Frauscher’s technical team has developed the communication board that supports the RSSP protocol (COM-RSSP) and successfully obtained the CENELEC SIL 4 Certification two years ago.

Software interface

Frauscher Advanced Counter FAdC® is able to communicate with higher-level systems via the Ethernet interface using customised protocols. The protocols RSSP and FSFB have been used in China.

Installation friendly

The tail cable of Wheel Sensor RSR180 and Frauscher Rail Claw SK150 are specially designed for easy installation without track drilling.

Similar Projects
This might also interest you
1/5
train-detectionChina

Fenghuang Maglev | China

Fenghuang Maglev is a medium-low speed maglev rapid transit line. Since maglev trains do not have wheels, traditional wheel-based detection systems cannot be directly applied to maglev traffic engineering.
train-detectionIndia

Vijayawada – Gannavaram Rail Line | India

The Vijayawada – Gannavaram rail line belongs to South Central Railway and is situated in Andhra Pradesh. Initially, the line featured a conventional signalling system and there was a requirement by the operator to update this into an automatic signalling system with the Frauscher Advanced Counter FAdC®.
train-detectionUnited Kingdom of Great Britain and Northern Ireland

The Borders Railway Project | United Kingdom

From Shawfair to Tweedbank, the Borders Railway rail route underwent significant renovations after 45 years of disconnect due to Beeching cuts. Our Frauscher UK & Ireland team were involved in providing innovative solutions for train detection for a section of the Borders Railway route.
train-detectionUnited States of America

Tracking Trains in Houston | USA

Houston MetroRail (METRO for short) is comprised of three light-rail lines covering 22 miles. Two-car, low-floor trainsets are powered by overhead catenary and operated on a mix of rail types, including embedded, grooved, concrete, and ballasted track. Harsh weather conditions such as extreme heat, humidity, and storms with heavy rains causing floods are typical for Houston. Combined with the variable track structure this caused significant malfunctions of the wheel sensors of METRO’s signalling system.
train-detectionUnited States of America

Charlotte Area Transit System (CATS) Supplementing Audio Frequency Track Circuits with Axle Counters | USA

At the Charlotte Area Transit System, frequent false red signal overruns resulted when electromagnetic interference caused “bobbing” of the line’s audio frequency track circuits. The Frauscher Advanced Counter FAdC® was subsequently considered as an alternative to these track circuits to eliminate the occurrence of false red signal overruns.