Homologation for the Île-de-France tramway network | France
Train DetectionFrance

Homologation for the Île-de-France tramway network

Operator
RATP (Régie Autonome des Transports Parisiens)
Country
France
Partner
INEO
Segment
Urban
Application
Track Vacancy Detection
Products
FAdC®, RSR180
Year
2019

The network of Île-de-France tramways in the region of Paris has been a showcase model of public transport since the line T1 opened in 1992. Over a million passengers use these trams daily and today, the system consists of 11 lines covering over 100 kilometres of track. Over the next years it is planned to expand this network even further. For track vacancy detection, the Frauscher axle counting system is considered as being the ideal solution for this comprehensive network.

To realize the project, a homologation of the relevant components was needed from the quality team of RATP (Régie Autonome des Transports Parisiens). Thus, Frauscher installed the Frauscher Advanced Counter FAdC® axle counter with Wheel Sensors RSR180 GS05. Furthermore, in line T8’s depot, the existing Frauscher Axle Counting System ACS2000 with RSR180 GS03 wheel sensors was updated with the new system. 

The project was initiated in 2019 and successfully completed in 2020. A track section in the depot’s shunting area that includes a red-light crossing was chosen for the installation. The track section is composed by four counting heads on which the FAdC® is used for track vacancy detection. The red-light crossing comes into play at the first counting head, directly before the point.

The homologation process included a thorough test of the installation during a period of six months, the audit of product safety documentation, as well as many other factors which were considered as well.

Similar Projects
This might also interest you
1/5
Train DetectionIndia

Jhansi - Bina Railway Line

The Jhansi-Bina railway line is a strategically important line which belongs to North Central Railway and is in Uttar Pradesh. Initially, the line featured analogue axle counters for detecting trains in individual track sections as well as a DC track circuit train detection system in less congested areas.
Train DetectionIndia

Vijayawada – Gannavaram Rail Line

The Vijayawada – Gannavaram rail line belongs to South Central Railway and is situated in Andhra Pradesh. Initially, the line featured a conventional signalling system and there was a requirement by the operator to update this into an automatic signalling system with the Frauscher Advanced Counter FAdC®.
Train DetectionKazakhstan

FAdC® at Vhodnaya Station

ArcelorMittal is responsible for the operation of a dedicated industrial railway infrastructure located in Temirtau, Kazakhstan. At Vhodnaya station, an essential shunting yard, various goods and materials, such as polyester, zinc, aluminium, sinter, iron ore, and coke-chemical products, are loaded and unloaded. The station's robust infrastructure features 64 switching points and 68 signals, necessitating the use of a high-performing train detection system to ensure the safe and efficient management of traffic flow.
Train DetectionIndia

Ensuring reliable rail operations across India´s longest rail-road bridge

The Bogibeel Bridge is India’s longest rail-road bridge that connects Assam and Arunachal Pradesh, carrying both rail and road traffic across the Brahmaputra River. Harsh environmental conditions and structural constraints made conventional signalling unworkable. The Frauscher Advanced Counter FAdC® axle counting system was selected for its proven reliability and low maintenance under these challenging conditions.
Train Detection, ServicesIndia

Sini - Chandil Railway Line

The Sini-Chandil railway line is a crucial rail connection located in the state of Jharkhand, which lies in the eastern coastal region of India. This railway line holds significant strategic importance for the entire region, and now incorporates Frauscher solutions, including the Frauscher Advanced Counter FAdC®, Wheel Sensor RSR180 and the Frauscher Insights applications Diagnostics and Motion.