Axle Counter Overlay System | UK
train-detectionUnited Kingdom of Great Britain and Northern Ireland

Axle Counter Overlay System | UK

Operator
Network Rail
Country
United Kingdom of Great Britain and Northern Ireland
Partner
Siemens
Segment
Main & Regional Line
Application
Track Vacancy Detection
Products
FAdC®, RSR123
Year
2019
Scope of project
45 counting heads, 4 FAdC® location cases

Between London St Pancras International Station and Farringdon Station, there is a history of frequent flooding through the tunnels that adversely affected the reliability of the existing train detection system. Due to this, the installation was non-operational during large periods. However, being a mainline section and a core route through London, high reciliation to any sort of failures is vital.

In 2019, Network Rail started to look at how to improve the overall reliability of the railway without removing the existing detection system. The main requirement was guaranteeing maximum availability considering the local conditions without interfering with the existing installation.

Due to its great reliability under such circumstances the Frauscher Advanced Counter FAdC® has been chosen as the most appropriate solution. The FAdC’s® modular design allowed for the establishment of a decentralised architecture, where four external location cases were installed between the two stations to host the axle counter’s indoor equipment. The system is supported by the Frauscher Wheel Sensor RSR123, which precisely tracks every train axle. The sensor is extremely resilient to water penetration and other environmental and external influences. Thanks to the IP68 rated housing, it even works reliably in case of floods.

Excellent match of requirements

The FAdC® units installed in location cases between the stations can communicate with one another via a vital Ethernet interface and also with the higher-ranking system using relay outputs. With overlay systems, the new track sections had to match the existing track section limits. Therefore, the system had a specific requirement to install the RSR123 within 0.5 m of the existing train detection system and within proximity of the neutral section to avoid any impact on the signalling controls.

Great resilience

The RSR123 is highly resilient against any interference or environmental influences.

Similar Projects
This might also interest you
1/5
train-detectionChina

Tram Huangpu Line 1 | China

Tram Huangpu Line 1 (HP1) line is located in urban areas with high traffic density and passenger volume as well as many level crossings. The adverse weather conditions can cause flooding of the track bed and add to the challenges for reliable system availability and operations.
train-detectionFrance

Homologation for the Île-de-France tramway network | France

The network of Île-de-France tramways in the region of Paris has been a showcase model of public transport since the line T1 opened in 1992. Over a million passengers use these trams daily and today, the system consists of 11 lines covering over 100 kilometres of track. Over the next years it is planned to expand this network even further. For track vacancy detection, the Frauscher axle counting system is considered as being the ideal solution for this comprehensive network.
train-detectionUnited Kingdom of Great Britain and Northern Ireland

The Borders Railway Project | United Kingdom

From Shawfair to Tweedbank, the Borders Railway rail route underwent significant renovations after 45 years of disconnect due to Beeching cuts. Our Frauscher UK & Ireland team were involved in providing innovative solutions for train detection for a section of the Borders Railway route.
train-detectionChina

Chengdu Tram Line 2 | China

Chengdu Tram Line, located in the capital Chengdu City of Sichuan Province, is the first tram line to be operational in the city since 2018.
train-detectionChina

Beijing Metro Line 12 | China

The Beijing Metro Line 12 is the first metro line that combines Frauscher Advanced Counter FAdC® and Railway Signal Safety Protocol Type I (RSSP-I). The line is currently under construction and expected to be put into operation at the end of 2024.