Frauscher Sensor Technology has completed the divestiture to Wabtec Corporation.

Find Out More
The Borders Railway Project | United Kingdom
Train DetectionUnited Kingdom of Great Britain and Northern Ireland

The Borders Railway Project

Operator
Network Rail
Country
United Kingdom of Great Britain and Northern Ireland
Partner
Siemens
Segment
Main & Regional Line
Application
Track Vacancy Detection
Products
FAdC®, RSR123
Year
10/2019
Scope of project
29 RSR123

From Shawfair to Tweedbank, the Borders Railway rail route underwent significant renovations after 45 years of disconnect due to Beeching cuts. Our Frauscher UK & Ireland team were involved in providing innovative solutions for train detection for a section of the Borders Railway route.

The Borders Railway project aims to revitalise a 30-mile rail link through the Scottish Borders, originally closed in 1969 due to the Beeching cuts. This project seeks to reconnect communities, enhance local tourism, and improve transportation efficiency, while preserving Scotland’s rail heritage.

The Frauscher UK & Ireland team played a vital role in supplying train detection system to a section of the Borders Rail, which includes seven stations from Shawfair to Tweedbank. Frauscher's Advanced Counter FAdC® and Wheel Sensor RSR123 were chosen due to their wide array of benefits. The FAdC® was selected for this project mainly because of its exceptional availability, reliability, and safety, as well as its lower lifecycle and maintenance costs compared to alternative systems. Additionally, its flexible architecture makes the FAdC® compatible with small, large, and complex systems, which was particularly beneficial for meeting the specific needs of this project. Furthermore, the Frauscher Wheel Sensor RSR123 was selected for this project due to its overall reliability and availability, ensuring smooth, safe and efficient rail operations. Its IP68 certification ensures it can withstand water and dust ingress, making it ideal for challenging operational conditions. Furthermore, the robust design of the RSR123 guarantees reliable performance in extreme temperatures, while the pluggable sensor cables simplify installation and reduce costs by eliminating complex wiring.

Reduced Failures and Enhances MTBF

Our Frauscher innovative solutions reduced the number of failures and improved the overall Mean Time Between Failures MTBF.

Cost Savings

The cost savings in Schedule 8 reduced the need for extensive maintenance and fewer service-affecting failures.

Similar Projects
This might also interest you
1/5
Train DetectionIndia

Ensuring reliable rail operations across India´s longest rail-road bridge

The Bogibeel Bridge is India’s longest rail-road bridge that connects Assam and Arunachal Pradesh, carrying both rail and road traffic across the Brahmaputra River. Harsh environmental conditions and structural constraints made conventional signalling unworkable. The Frauscher Advanced Counter FAdC® axle counting system was selected for its proven reliability and low maintenance under these challenging conditions.
Train DetectionUnited States of America

Tracking Trains in Houston

Houston MetroRail (METRO for short) is comprised of three light-rail lines covering 22 miles. Two-car, low-floor trainsets are powered by overhead catenary and operated on a mix of rail types, including embedded, grooved, concrete, and ballasted track. Harsh weather conditions such as extreme heat, humidity, and storms with heavy rains causing floods are typical for Houston. Combined with the variable track structure this caused significant malfunctions of the wheel sensors of METRO’s signalling system.
Train DetectionIndia

Vijayawada – Gannavaram Rail Line

The Vijayawada – Gannavaram rail line belongs to South Central Railway and is situated in Andhra Pradesh. Initially, the line featured a conventional signalling system and there was a requirement by the operator to update this into an automatic signalling system with the Frauscher Advanced Counter FAdC®.
Train DetectionChina

CBTC Fallback System on Beijing Metro Lines

Beijing metro, one of the busiest lines in the world, was Frauscher’s very first assignment when entering the Chinese market. Due to its utilised capacity, it requires a great level of stability, reliability and performance of the entire signalling system. The Communication Based Train Control System (CBTC) applied here relies on a backup system consisting of fixed automatic train detection systems. Axle counting systems from Frauscher are perfectly suited for the accurate operation of such stand-by systems.
Train DetectionDenmark

Renewal signalling FAdC® and RSR123

Banedanmark, the Danish railway infrastructure owner, started replacing the existing signalling system in the Eastern region of Denmark in 2009 to implement the newest proven signalling technology, based on standard industrial hardware components and redundant system configurations. Uniform system interfaces should reduce signalling failures to provide a better reliability and punctuality of the entire network. For this project, Frauscher delivered the Frauscher Advanced Counter FAdC® and the Frauscher Wheel Sensor RSR123.