Ensuring reliable rail operations across India´s longest rail-road bridge
train-detectionIndia

Ensuring reliable rail operations across India´s longest rail-road bridge

Operator
Indian Railways - Northeast Frontier Railway
Country
India
Partner
Technocom
Segment
Main & Regional Line
Application
Block Section
Products
FAdC®, RSR180

The Bogibeel Bridge is India’s longest rail-road bridge that connects Assam and Arunachal Pradesh, carrying both rail and road traffic across the Brahmaputra River. Harsh environmental conditions and structural constraints made conventional signalling unworkable. The Frauscher Advanced Counter FAdC® axle counting system was selected for its proven reliability and low maintenance under these challenging conditions.

The Bogibeel Bridge, India’s longest rail-cum-road bridge at 4.94 km, is a strategically vital link connecting Assam and Arunachal Pradesh over the Brahmaputra River. As the country’s first fully welded steel bridge, it offers durability and reduced maintenance, while significantly improving mobility and regional connectivity. Its operation required a highly reliable railway signalling system to cover a 13 km block section, including the bridge span, where conventional track circuits were unsuitable due to structural and environmental constraints.

Frauscher’s Train Detection System was selected as the ideal solution. Offering SIL 4 safety, flexibility, and proven performance, it was implemented with the Wheel Sensor RSR180 at Tangani Station and Dhamalgaon Block Cabin. A Dual Detection configuration ensured reliability, while media redundancy was achieved through both OFC and Quad mediums, safeguarding against communication failures. The system’s distributed architecture with redundant power and communication further enhanced safety and efficiency.

Key features included co-operational reset functionality to minimise delays, the Frauscher Diagnostic System FDS for real-time monitoring, and patented rail claws for quick, non-invasive sensor installation. With no trackside electronics required and Indian Railways staff trained to operate it, the system delivered a cost-effective, future-ready solution tailored to Bogibeel Bridge’s demanding environment.

Exceptional reliability

The distributed architecture of the FAdC® enhanced operational safety and dependability, ensuring smooth and secure railway operations.

Seamless installation & track integrity

The Wheel Sensor RSR180 allowed effortless installation without drilling and facilitated easy detachment during maintenance, preserving track integrity.

Uninterrupted operation with media redundancy

By leveraging both Optical Fiber Cable (OFC) and Quad mediums, the Frauscher system ensured fail-safe performance, thereby minimising disruptions.

Minimal maintenance & enhanced efficiency

The absence of active outdoor electronics significantly reduced maintenance demands and eliminated the need for earthing and enhancing long-term efficiency.

Cost-effective alternative

Delivering the same level of redundancy and safety as HASSDAC, the FAdC® provided a more economical solution without compromising on performance.

Similar Projects
This might also interest you
1/5
train-detection, servicesIndia

Sini - Chandil Railway Line

The Sini-Chandil railway line is a crucial rail connection located in the state of Jharkhand, which lies in the eastern coastal region of India. This railway line holds significant strategic importance for the entire region, and now incorporates Frauscher solutions, including the Frauscher Advanced Counter FAdC®, Wheel Sensor RSR180 and the Frauscher Insights applications Diagnostics and Motion.
train-detectionDenmark

Renewal signalling FAdC® and RSR123

Banedanmark, the Danish railway infrastructure owner, started replacing the existing signalling system in the Eastern region of Denmark in 2009 to implement the newest proven signalling technology, based on standard industrial hardware components and redundant system configurations. Uniform system interfaces should reduce signalling failures to provide a better reliability and punctuality of the entire network. For this project, Frauscher delivered the Frauscher Advanced Counter FAdC® and the Frauscher Wheel Sensor RSR123.
data-transmissionUnited Kingdom of Great Britain and Northern Ireland

Headbolt Lane to Rainford Project

As part of the project to expand Merseyrail services, the operator needed to address the challenge of transmitting indication information over a specific section, spanning from Headbolt Lane to Rainford. In this instance, Frauscher’s technology was utilised to fulfill the data transmission requirements of this project, avoiding expensive and time consuming cabling that would have otherwise been required.
train-detectionUnited Kingdom of Great Britain and Northern Ireland

Wherry Lines

The Wherry Lines are railway branch lines in East Anglia in the East of England, linking Norwich – Great Yarmouth – Lowestoft. The project aimed to integrate Frauscher Advanced Counter FAdC into two external systems to mitigate against a train passing a red signal without authority on approach to level crossings.
train-detectionChina

CBTC Fallback System on Beijing Metro Lines

Beijing metro, one of the busiest lines in the world, was Frauscher’s very first assignment when entering the Chinese market. Due to its utilised capacity, it requires a great level of stability, reliability and performance of the entire signalling system. The Communication Based Train Control System (CBTC) applied here relies on a backup system consisting of fixed automatic train detection systems. Axle counting systems from Frauscher are perfectly suited for the accurate operation of such stand-by systems.