Frauscher Sensor Technology has completed the divestiture to Wabtec Corporation.

Find Out More
Ensuring reliable rail operations across India´s longest rail-road bridge
Train DetectionIndia

Ensuring reliable rail operations across India´s longest rail-road bridge

Operator
Indian Railways - Northeast Frontier Railway
Country
India
Partner
Technocom
Segment
Main & Regional Line
Application
Block Section
Products
FAdC®, RSR180

The Bogibeel Bridge is India’s longest rail-road bridge that connects Assam and Arunachal Pradesh, carrying both rail and road traffic across the Brahmaputra River. Harsh environmental conditions and structural constraints made conventional signalling unworkable. The Frauscher Advanced Counter FAdC® axle counting system was selected for its proven reliability and low maintenance under these challenging conditions.

The Bogibeel Bridge, India’s longest rail-cum-road bridge at 4.94 km, is a strategically vital link connecting Assam and Arunachal Pradesh over the Brahmaputra River. As the country’s first fully welded steel bridge, it offers durability and reduced maintenance, while significantly improving mobility and regional connectivity. Its operation required a highly reliable railway signalling system to cover a 13 km block section, including the bridge span, where conventional track circuits were unsuitable due to structural and environmental constraints.

Frauscher’s Train Detection System was selected as the ideal solution. Offering SIL 4 safety, flexibility, and proven performance, it was implemented with the Wheel Sensor RSR180 at Tangani Station and Dhamalgaon Block Cabin. A Dual Detection configuration ensured reliability, while media redundancy was achieved through both OFC and Quad mediums, safeguarding against communication failures. The system’s distributed architecture with redundant power and communication further enhanced safety and efficiency.

Key features included co-operational reset functionality to minimise delays, the Frauscher Diagnostic System FDS for real-time monitoring, and patented rail claws for quick, non-invasive sensor installation. With no trackside electronics required and Indian Railways staff trained to operate it, the system delivered a cost-effective, future-ready solution tailored to Bogibeel Bridge’s demanding environment.

Exceptional reliability

The distributed architecture of the FAdC® enhanced operational safety and dependability, ensuring smooth and secure railway operations.

Seamless installation & track integrity

The Wheel Sensor RSR180 allowed effortless installation without drilling and facilitated easy detachment during maintenance, preserving track integrity.

Uninterrupted operation with media redundancy

By leveraging both Optical Fiber Cable (OFC) and Quad mediums, the Frauscher system ensured fail-safe performance, thereby minimising disruptions.

Minimal maintenance & enhanced efficiency

The absence of active outdoor electronics significantly reduced maintenance demands and eliminated the need for earthing and enhancing long-term efficiency.

Cost-effective alternative

Delivering the same level of redundancy and safety as HASSDAC, the FAdC® provided a more economical solution without compromising on performance.

Similar Projects
This might also interest you
1/5
Train Detection, ServicesIndia

Sini - Chandil Railway Line

The Sini-Chandil railway line is a crucial rail connection located in the state of Jharkhand, which lies in the eastern coastal region of India. This railway line holds significant strategic importance for the entire region, and now incorporates Frauscher solutions, including the Frauscher Advanced Counter FAdC®, Wheel Sensor RSR180 and the Frauscher Insights applications Diagnostics and Motion.
Data TransmissionUnited Kingdom of Great Britain and Northern Ireland

Headbolt Lane to Rainford Project

As part of the project to expand Merseyrail services, the operator needed to address the challenge of transmitting indication information over a specific section, spanning from Headbolt Lane to Rainford. In this instance, Frauscher’s technology was utilised to fulfill the data transmission requirements of this project, avoiding expensive and time consuming cabling that would have otherwise been required.
Train DetectionUnited States of America

Tracking Trains in Houston

Houston MetroRail (METRO for short) is comprised of three light-rail lines covering 22 miles. Two-car, low-floor trainsets are powered by overhead catenary and operated on a mix of rail types, including embedded, grooved, concrete, and ballasted track. Harsh weather conditions such as extreme heat, humidity, and storms with heavy rains causing floods are typical for Houston. Combined with the variable track structure this caused significant malfunctions of the wheel sensors of METRO’s signalling system.
Train DetectionFrance

Axle counting adds fail-safe control to laser diagnostics

When MERMEC set out to install a laser-based Wheel Profile Measurement System in close proximity to the Eurotunnel, they faced a critical challenge: how to avoid unintended laser exposure without compromising the system’s ability to inspect up to 200 trains per day. To meet these requirements, MERMEC partnered with Frauscher.
Train DetectionUnited Kingdom of Great Britain and Northern Ireland

London to Corby

The project was part of Network Rail’s Midland Main line electrification programme and involved re-signalling between Bedford and Kettering. The goal is the reduction of industry costs and environmental benefits through lighter rolling stock, reduced fuel costs and lower carbon emissions.