Frauscher Sensor Technology has completed the divestiture to Wabtec Corporation.

Find Out More
Ensuring reliable rail operations across India´s longest rail-road bridge
Train DetectionIndia

Ensuring reliable rail operations across India´s longest rail-road bridge

Operator
Indian Railways - Northeast Frontier Railway
Country
India
Partner
Technocom
Segment
Main & Regional Line
Application
Block Section
Products
FAdC®, RSR180

The Bogibeel Bridge is India’s longest rail-road bridge that connects Assam and Arunachal Pradesh, carrying both rail and road traffic across the Brahmaputra River. Harsh environmental conditions and structural constraints made conventional signalling unworkable. The Frauscher Advanced Counter FAdC® axle counting system was selected for its proven reliability and low maintenance under these challenging conditions.

The Bogibeel Bridge, India’s longest rail-cum-road bridge at 4.94 km, is a strategically vital link connecting Assam and Arunachal Pradesh over the Brahmaputra River. As the country’s first fully welded steel bridge, it offers durability and reduced maintenance, while significantly improving mobility and regional connectivity. Its operation required a highly reliable railway signalling system to cover a 13 km block section, including the bridge span, where conventional track circuits were unsuitable due to structural and environmental constraints.

Frauscher’s Train Detection System was selected as the ideal solution. Offering SIL 4 safety, flexibility, and proven performance, it was implemented with the Wheel Sensor RSR180 at Tangani Station and Dhamalgaon Block Cabin. A Dual Detection configuration ensured reliability, while media redundancy was achieved through both OFC and Quad mediums, safeguarding against communication failures. The system’s distributed architecture with redundant power and communication further enhanced safety and efficiency.

Key features included co-operational reset functionality to minimise delays, the Frauscher Diagnostic System FDS for real-time monitoring, and patented rail claws for quick, non-invasive sensor installation. With no trackside electronics required and Indian Railways staff trained to operate it, the system delivered a cost-effective, future-ready solution tailored to Bogibeel Bridge’s demanding environment.

Exceptional reliability

The distributed architecture of the FAdC® enhanced operational safety and dependability, ensuring smooth and secure railway operations.

Seamless installation & track integrity

The Wheel Sensor RSR180 allowed effortless installation without drilling and facilitated easy detachment during maintenance, preserving track integrity.

Uninterrupted operation with media redundancy

By leveraging both Optical Fiber Cable (OFC) and Quad mediums, the Frauscher system ensured fail-safe performance, thereby minimising disruptions.

Minimal maintenance & enhanced efficiency

The absence of active outdoor electronics significantly reduced maintenance demands and eliminated the need for earthing and enhancing long-term efficiency.

Cost-effective alternative

Delivering the same level of redundancy and safety as HASSDAC, the FAdC® provided a more economical solution without compromising on performance.

Similar Projects
This might also interest you
1/5
Train DetectionFrance

Axle counting adds fail-safe control to laser diagnostics

When MERMEC set out to install a laser-based Wheel Profile Measurement System in close proximity to the Eurotunnel, they faced a critical challenge: how to avoid unintended laser exposure without compromising the system’s ability to inspect up to 200 trains per day. To meet these requirements, MERMEC partnered with Frauscher.
Train DetectionUnited Kingdom of Great Britain and Northern Ireland

London to Corby

The project was part of Network Rail’s Midland Main line electrification programme and involved re-signalling between Bedford and Kettering. The goal is the reduction of industry costs and environmental benefits through lighter rolling stock, reduced fuel costs and lower carbon emissions.
Train DetectionUnited Kingdom of Great Britain and Northern Ireland

The Borders Railway Project

From Shawfair to Tweedbank, the Borders Railway rail route underwent significant renovations after 45 years of disconnect due to Beeching cuts. Our Frauscher UK & Ireland team were involved in providing innovative solutions for train detection for a section of the Borders Railway route.
Train DetectionDenmark

Renewal signalling FAdC® and RSR123

Banedanmark, the Danish railway infrastructure owner, started replacing the existing signalling system in the Eastern region of Denmark in 2009 to implement the newest proven signalling technology, based on standard industrial hardware components and redundant system configurations. Uniform system interfaces should reduce signalling failures to provide a better reliability and punctuality of the entire network. For this project, Frauscher delivered the Frauscher Advanced Counter FAdC® and the Frauscher Wheel Sensor RSR123.
Train DetectionPoland

Metro Warsaw

Metro Warsaw was looking for an alternative to track circuits for the line M2, to increase the availability of public transport by using reliable signalling technology. In the end, the operator even decided to replace the existing track circuits on line M1 with the Frauscher Axle Counter ACS200.