FAdC® at Uglerudnaya Station | Kazakhstan
Train DetectionKazakhstan

FAdC® at Uglerudnaya Station

Operator
ArcelorMittal Temirtau
Country
Kazakhstan
Partner
Kazcenterelectroprovod (KCEP)
Segment
Industrial & Mining
Application
Level Crossing Protection
Products
FAdC®, RSR180
Year
2017

AcelorMittal is the operator of the Uglerudnaya industrial railway station, located in Temirtau, Kazakhstan. The station features a total of 56 switches and 52 track sections to enable the smooth flow of train traffic. To ensure the safety of all trains, an interlocking system is used to establish secure routes for incoming, outgoing, and passing trains. This requires effective traffic management and a dependable train detection system to detect the presence of trains on the tracks.

The Uglerudnaya station in Temirtau, Kazakhstan handles various raw materials, including coal, ore, fluxes, and refractories.

In September 2018, the Frauscher Advanced Counter FAdC® was installed at the Uglerudnaya station, alongside 89 Frauscher Wheel Sensors RSR180 which were fitted in 52 track sections. The installation of the new system led to a significant reduction in lifecycle and maintenance costs, as well as a decrease in downtime due to train detection failures. Efficiency in traffic management and the use of freight cars also increased. Furthermore, another useful feature for the signalling staff is the confirmation of train integrity via the axle counter, as well as the individual reset options and comprehensive diagnostic facilities which provide the Uglerudnaya station with enhanced operational efficiency.

Lower maintenance costs

By installing the axle counter, lifecycle and maintenance costs have been reduced dramatically.

Greater efficiency

Efficiency in terms of traffic management and the use of freight cars has increased.

Increase in system availability

Increase in uptime due to no train detection failures, leading to greater availability.

Similar Projects
This might also interest you
1/5
Train DetectionUnited States of America

Charlotte Area Transit System (CATS) Supplementing Audio Frequency Track Circuits with Axle Counters

At the Charlotte Area Transit System, frequent false red signal overruns resulted when electromagnetic interference caused “bobbing” of the line’s audio frequency track circuits. The Frauscher Advanced Counter FAdC® was subsequently considered as an alternative to these track circuits to eliminate the occurrence of false red signal overruns.
Train DetectionSerbia

Hungary-Serbia Railway Project

The Hungary-Serbia Railway Project is an iconic project of the “One Belt One Road” Initiative between China and CEE countries. Frauscher provides not only high-quality solutions but also detailed technical support and clarification.
Train DetectionUnited Kingdom of Great Britain and Northern Ireland

London to Corby

The project was part of Network Rail’s Midland Main line electrification programme and involved re-signalling between Bedford and Kettering. The goal is the reduction of industry costs and environmental benefits through lighter rolling stock, reduced fuel costs and lower carbon emissions.
Train DetectionChina

CBTC Fallback System on Beijing Metro Lines

Beijing metro, one of the busiest lines in the world, was Frauscher’s very first assignment when entering the Chinese market. Due to its utilised capacity, it requires a great level of stability, reliability and performance of the entire signalling system. The Communication Based Train Control System (CBTC) applied here relies on a backup system consisting of fixed automatic train detection systems. Axle counting systems from Frauscher are perfectly suited for the accurate operation of such stand-by systems.
Train DetectionIndia

Vijayawada – Gannavaram Rail Line

The Vijayawada – Gannavaram rail line belongs to South Central Railway and is situated in Andhra Pradesh. Initially, the line featured a conventional signalling system and there was a requirement by the operator to update this into an automatic signalling system with the Frauscher Advanced Counter FAdC®.