Frauscher Sensor Technology has completed the divestiture to Wabtec Corporation.

Find Out More
FAdC® at Uglerudnaya Station | Kazakhstan
Train DetectionKazakhstan

FAdC® at Uglerudnaya Station

Operator
ArcelorMittal Temirtau
Country
Kazakhstan
Partner
Kazcenterelectroprovod (KCEP)
Segment
Industrial & Mining
Application
Level Crossing Protection
Products
FAdC®, RSR180
Year
2017

AcelorMittal is the operator of the Uglerudnaya industrial railway station, located in Temirtau, Kazakhstan. The station features a total of 56 switches and 52 track sections to enable the smooth flow of train traffic. To ensure the safety of all trains, an interlocking system is used to establish secure routes for incoming, outgoing, and passing trains. This requires effective traffic management and a dependable train detection system to detect the presence of trains on the tracks.

The Uglerudnaya station in Temirtau, Kazakhstan handles various raw materials, including coal, ore, fluxes, and refractories.

In September 2018, the Frauscher Advanced Counter FAdC® was installed at the Uglerudnaya station, alongside 89 Frauscher Wheel Sensors RSR180 which were fitted in 52 track sections. The installation of the new system led to a significant reduction in lifecycle and maintenance costs, as well as a decrease in downtime due to train detection failures. Efficiency in traffic management and the use of freight cars also increased. Furthermore, another useful feature for the signalling staff is the confirmation of train integrity via the axle counter, as well as the individual reset options and comprehensive diagnostic facilities which provide the Uglerudnaya station with enhanced operational efficiency.

Lower maintenance costs

By installing the axle counter, lifecycle and maintenance costs have been reduced dramatically.

Greater efficiency

Efficiency in terms of traffic management and the use of freight cars has increased.

Increase in system availability

Increase in uptime due to no train detection failures, leading to greater availability.

Similar Projects
This might also interest you
1/5
Train DetectionCanada

Toronto Transit Commission

The Toronto Transit Commission (TTC) Line 1 Yonge-University is Toronto’s longest subway line, with track circuits utilized for signalling. Due to an increasing number of daily passengers and an aged system the need for upgrading without interfering with the daily operations became readily apparent. It was further required that the new signalling system functions independently of the existing system. It would provide CBTC fallback functionalities, and work as an overlay to the current track circuit-based system.
Train DetectionIndia

Jhansi - Bina Railway Line

The Jhansi-Bina railway line is a strategically important line which belongs to North Central Railway and is in Uttar Pradesh. Initially, the line featured analogue axle counters for detecting trains in individual track sections as well as a DC track circuit train detection system in less congested areas.
Train DetectionIndia

Increasing Availability at Adra Yard

Adra Yard belongs to the Southeastern Railway Zone of Indian Railways and is in West Bengal. Initially the yard was equipped with track circuits and there was a requirement to get them replaced with the Frauscher Advanced Counter FAdC®. This project is one of Frauscher’s esteemed Indian Railway Projects with a coverage of 139 counting heads and 97 track sections.
Data TransmissionUnited Kingdom of Great Britain and Northern Ireland

Headbolt Lane to Rainford Project

As part of the project to expand Merseyrail services, the operator needed to address the challenge of transmitting indication information over a specific section, spanning from Headbolt Lane to Rainford. In this instance, Frauscher’s technology was utilised to fulfill the data transmission requirements of this project, avoiding expensive and time consuming cabling that would have otherwise been required.
Train DetectionChina

Tram Huangpu Line 1

Tram Huangpu Line 1 (HP1) line is located in urban areas with high traffic density and passenger volume as well as many level crossings. The adverse weather conditions can cause flooding of the track bed and add to the challenges for reliable system availability and operations.