Hungary-Serbia Railway Project | Serbia
train-detectionSerbia

Hungary-Serbia Railway Project | Serbia

Operator
JSC Serbian Railway
Country
Serbia
Partner
CRSC
Segment
Main & Regional Line
Application
Track Vacancy Detection
Products
RSR123, FAdC®
Protocols
Frauscher Safe Ethernet FSE
Year
2019

The Hungary-Serbia Railway Project is an iconic project of the “One Belt One Road” Initiative between China and CEE countries. Frauscher provides not only high-quality solutions but also detailed technical support and clarification.

The Hungary-Serbia Railway Project is an iconic project of the “One Belt One Road” Initiative between China and CEE countries. The railway runs from Belgrade, Serbia to Budapest, Hungary, spanning a total of 341.7 km. The project is taking place in Serbia. Currently, the section from Belgrade to Nov Sad has been put into operation in March 2022, with a maximum operating speed of 200km/h.

Frauscher supplied the Frauscher Advanced Counter FAdC® for this project, using the Frauscher Safe Ethernet FSE protocol. The wheel sensor RSR123 installed on the trackside proves a robust ability to EMI by its V.mix Technology® patent. Its pluggable cable also makes it easier to install and replace. Both the indoor and outdoor equipment significantly speed up the installation and reduced the costs for the entire project.

The transcontinental railway requires Chinese railroad equipment that aligns with the ETCS-L2 train control system standards of Europe and the Certificate of Technical Specification for Interoperability (TSI), a new requirement for Chinese equipment in the rail signalling field.

Frauscher has cooperated with China Railway Signal & Communication Group (CRSC) for 15 years. As an Austrian brand in the Chinese market, the Frauscher China team, Austrian headquarters, and CEE team worked closely together to play an indispensable role as a link between China and Europe in the process of aligning signalling technology standards, providing technical clarification support for customers to attain the TSI certificates and Serbian country approval.

Flexible configuration options

Frauscher Advanced Counter FAdC® is able to communicate with higher-level interlocking system via safety protocols, such as customized protocols and Frauscher Safety Ethernet FSE which is used in this project.

Highly resistant to electromagnetic interferences

Wheel Sensor RSR123 has a high ability to resist the EMI with its V.Mix Technology® patent. Its pluggable cable and Frauscher Rail Claw SK150 significantly reduce installation and maintenance costs.

Exhaustive technical service

Frauscher provides not only high-performance products but also detailed technology clarification and on-site training.

Similar Projects
This might also interest you
1/5
train-detectionUnited Kingdom of Great Britain and Northern Ireland

Maintaining the past, creating the future | UK

The Dean Forest Railway (DFR) operates a historical 7 km passenger service line running north from Lydney Junction to Parkend, in the Forest of Dean. Due to extensions of the line and an additional turnout being added at Parkend, an update and modernisation of the existing train detection and signalling system was necessary. Being a heritage railway, it requires high standards in terms of signalling and safety, whilst maintaining the historical touch of the line.
train-detectionGermany

Dillinger Hütte | Germany

A new ladder track was required to provide more parking tracks in the steel plant. At the same time, the layout of the dead end tracks were optimised and the efficiency of the whole depot improved by installing the Frauscher Advanced Counter FAdC®i in combination with the wheel sensor RSR180. With the implementation of the Frauscher Diagnostic System FDS, the overall maintenance costs can be significantly reduced.
train-detectionUnited States of America

Reducing Delays in a Metro (subway) Environment | USA

A large metro operator was researching ways to reduce bottlenecks that were causing significant delays at a busy station. With two routes dividing in close proximity to the station and a complex auto-routing system that required the use of a 30-second timer to release switches, trains would frequently back up when approaching the station.
train-detectionSpain

Three-rail Castellbisbal | Spain

The dual-gauge system of the Spanish railway network is quite challenging in terms of track vacancy detection: Wheel sensors must be installed on two rails next to each other in tight spaces and have to detect axles reliably on the respective rail. Frauscher developed a solution which copes also with the complexity of different interlocking technology in the stations along the line.
train-detectionPoland

Metro Warsaw | Poland

Metro Warsaw was looking for an alternative to track circuits for the line M2, to increase the availability of public transport by using reliable signalling technology. In the end, the operator even decided to replace the existing track circuits on line M1 with the Frauscher Axle Counter ACS200.