Frauscher Sensor Technology has completed the divestiture to Wabtec Corporation.

Find Out More
Renewal signalling FAdC® and RSR123 | Denmark
Train DetectionDenmark

Renewal signalling FAdC® and RSR123

Operator
BaneDanemark
Country
Denmark
Partner
Alstom
Segment
Main & Regional Line
Application
Track Vacancy Detection
Products
FAdC®, RSR123
Protocols
Proprietary protocols
Year
2009
Scope of project
Approx. 2500 track sections, 3000 counting heads

Banedanmark, the Danish railway infrastructure owner, started replacing the existing signalling system in the Eastern region of Denmark in 2009 to implement the newest proven signalling technology, based on standard industrial hardware components and redundant system configurations. Uniform system interfaces should reduce signalling failures to provide a better reliability and punctuality of the entire network. For this project, Frauscher delivered the Frauscher Advanced Counter FAdC® and the Frauscher Wheel Sensor RSR123.

When replacing the existing signalling system in the Eastern region of Denmark with Alstom’s proven Atlas solution, Frauscher delivered both, the Frauscher Advanced Counter FAdC® and the Frauscher Wheel Sensor RSR123.

To ensure a complete and smooth integration of the Frauscher Advanced Counter into the design of the interlocking system, Alstom’s interface protocol FSFB2 has been implemented into the FAdC®. Due to this, all required information such as configuration files and design documentation can be generated automatically. This allows a significant reduction of the configuration and test outlay and increases the flexibility of further changes during the project without a considerable increase in additional costs.

Frauscher Diagnostic System FDS offers a software interface to allow a total integration of FAdC® diagnostics into operator’s overall diagnostic and maintenance system.

The use of the RSR123 increases the reliability in conditions of strong electromagnetic interferences. As no active electronic components are used on the trackside, the availability of this Frauscher wheel detection system is extremely high.

Reduction of life cycle costs

The preventative maintenance, optimisation of fault rectification, unrestricted online access to the axle counting system data and the minimisation of maintenance work led to a reduction in life cycle costs.

Reduction of configuration outlay

A complete integration of the Frauscher Advanced Counter FAdC® allows an automatic generation of configuration files and design documents to reduce the configuration and test outlay.

Less calibration errors

The automatic calibration process, which can be triggered remotely makes sure the user spends as little time as possible on the track and helps avoiding calibration errors.

Similar Projects
This might also interest you
1/5
Train DetectionUnited States of America

Frauscher Track Vacancy System FTVS Testing

During the initial development phase of the Frauscher Track Vacancy System FTVS, a number of pre-production units were released for real-world testing to examine their performance in typical yard environments. Consequently, several trials were conducted in the United States.
Train DetectionChina

Tram Huangpu Line 1

Tram Huangpu Line 1 (HP1) line is located in urban areas with high traffic density and passenger volume as well as many level crossings. The adverse weather conditions can cause flooding of the track bed and add to the challenges for reliable system availability and operations.
Train DetectionUnited Kingdom of Great Britain and Northern Ireland

Maintaining the past, creating the future

The Dean Forest Railway (DFR) operates a historical 7 km passenger service line running north from Lydney Junction to Parkend, in the Forest of Dean. Due to extensions of the line and an additional turnout being added at Parkend, an update and modernisation of the existing train detection and signalling system was necessary. Being a heritage railway, it requires high standards in terms of signalling and safety, whilst maintaining the historical touch of the line.
Train DetectionUnited States of America

Charlotte Area Transit System (CATS) Supplementing Audio Frequency Track Circuits with Axle Counters

At the Charlotte Area Transit System, frequent false red signal overruns resulted when electromagnetic interference caused “bobbing” of the line’s audio frequency track circuits. The Frauscher Advanced Counter FAdC® was subsequently considered as an alternative to these track circuits to eliminate the occurrence of false red signal overruns.
Train DetectionAustria

GKB Graz-Köflacher Bahn

The operator of the Graz-Köflacher Bahn has made substantial modernisations to the network, choosing a decentralised system architecture and the EULYNX standardised interface. In this case, it was crucial that the new system would ensure a seamless transition from the previous parallel interface for relay systems to EULYNX.