Wherry Lines | UK
train-detectionUnited Kingdom of Great Britain and Northern Ireland

Wherry Lines | UK

Operator
Network Rail
Country
United Kingdom of Great Britain and Northern Ireland
Partner
Atkins
Segment
Main & Regional Line
Application
Track Vacancy Detection
Products
RSR123, FAdC®
Protocols
Proprietary protocols
Year
2020

The Wherry Lines are railway branch lines in East Anglia in the East of England, linking Norwich – Great Yarmouth – Lowestoft. The project aimed to integrate Frauscher Advanced Counter FAdC® into two external systems to mitigate against a train passing a red signal without authority on approach to level crossings. Both systems were required to be a SIL 1 level and have the ability to communicate with an ElectrologIXS Interlocking.

For the Wherry Line project, two systems were implemented to mitigate against a train passing a red signal without authority on approach to level crossings. The first system being a method of predicting the likelihood of a train passing a signal based on its speed, the second being a Fast Acting SPAD Trigger (FAST) in the event that a train does traverse past a signal showing a red aspect.

The customer preferred to use the Frauscher equipment that was already installed on site for another project, consisting of the Frauscher Advanced Counter FAdC® and Wheel Sensor RSR123. This decision was made in favour of reducing lineside equipment while also reducing maintenance costs for the future.

As no data of previous speed measurement accuracy was available, Frauscher facilitated and undertook tests to determine the accuracy of the speed measurement at the speeds requested by the customer. Additionally, a formal SIL assessment was successfully undertaken by Atkins to achieve the required SIL 1 level for the system.

Lower maintenance costs

By using existing trackside equipment, no further installations were needed which reduces the required effort and costs for future maintenance.

Easy integration

The FAdC® proved its flexibility and versatility as an optimal solution for this project: It offers the ability to communicate with the customer’s protocol and can be easily integrated into existing systems.

Similar Projects
This might also interest you
1/5
train-detectionUnited Kingdom of Great Britain and Northern Ireland

Axle Counter Overlay System | UK

Between London St Pancras International Station and Farringdon Station, there is a history of frequent flooding through the tunnels that adversely affected the reliability of the existing train detection system. Due to this, the installation was non-operational during large periods. However, being a mainline section and a core route through London, high reciliation to any sort of failures is vital.
train-detectionUnited States of America

Reducing Delays in a Metro (subway) Environment | USA

A large metro operator was researching ways to reduce bottlenecks that were causing significant delays at a busy station. With two routes dividing in close proximity to the station and a complex auto-routing system that required the use of a 30-second timer to release switches, trains would frequently back up when approaching the station.
train-detectionKazakhstan

FAdC® at Uglerudnaya Station | Kazakhstan

AcelorMittal is the operator of the Uglerudnaya industrial railway station, located in Temirtau, Kazakhstan. The station features a total of 56 switches and 52 track sections to enable the smooth flow of train traffic. To ensure the safety of all trains, an interlocking system is used to establish secure routes for incoming, outgoing, and passing trains. This requires effective traffic management and a dependable train detection system to detect the presence of trains on the tracks.
train-detectionFinland

Kokkola | Finland

Frauscher supplied one of Finland’s busiest railway lines with new Axle Counters. The line was extended from a single to a double track section and Mipro was looking for a solution which can interface with their interlocking system in an efficient and cost effective way.
train-detectionUnited Kingdom of Great Britain and Northern Ireland

London to Corby | UK

The project was part of Network Rail’s Midland Main line electrification programme and involved re-signalling between Bedford and Kettering. The goal is the reduction of industry costs and environmental benefits through lighter rolling stock, reduced fuel costs and lower carbon emissions.