Charlotte Area Transit System (CATS) Supplementing Audio Frequency Track Circuits with Axle Counters | USA
Train DetectionUnited States of America

Charlotte Area Transit System (CATS) Supplementing Audio Frequency Track Circuits with Axle Counters

Operator
Charlotte Area Transit System
Country
United States of America
Partner
HNTB
Segment
Metro
Application
Level Crossing Protection
Products
FAdC®, RSR180
Year
2022
Scope of project
6 counting heads

At the Charlotte Area Transit System, frequent false red signal overruns resulted when electromagnetic interference caused “bobbing” of the line’s audio frequency track circuits. The Frauscher Advanced Counter FAdC® was subsequently considered as an alternative to these track circuits to eliminate the occurrence of false red signal overruns.

The operators of the Charlotte Area Transit System, at the advice of consultant HNTB, agreed to utilise the FAdC® for a shadow mode trial to determine if it would solve its prevalent issue of false red signal overruns. The main reason for consideration of the axle counter was its high immunity to the electromagnetic interference, which was causing this issue, as well as its ability to interoperate with the existing audio frequency track circuits. The trial was conducted at the Archdale Interlocking for nine and a half months, generating the expected positive results. The data indicated that although numerous events of track circuit “bobbing” occurred during the trial period and generated false overruns, the axle counter data showed that if it had been in service, these overruns would have been prevented.

The FAdC® was able to increase the availability and safety, ensuring consistent and smooth operation of this light rail line. The axle counters were then used to entirely replace the existing AF track circuits, after the vital testing was successfully completed and the personnel was fully trained. After finalisation of these important steps, the Frauscher Advanced Counter FAdC® was placed in revenue service.

Elimination of false red signal overruns

Protection against environmental conditions and electromagnetic interference

Similar Projects
This might also interest you
1/5
Train DetectionDenmark

Renewal signalling FAdC® and RSR123

Banedanmark, the Danish railway infrastructure owner, started replacing the existing signalling system in the Eastern region of Denmark in 2009 to implement the newest proven signalling technology, based on standard industrial hardware components and redundant system configurations. Uniform system interfaces should reduce signalling failures to provide a better reliability and punctuality of the entire network. For this project, Frauscher delivered the Frauscher Advanced Counter FAdC® and the Frauscher Wheel Sensor RSR123.
Train DetectionKazakhstan

FAdC® at Uglerudnaya Station

AcelorMittal is the operator of the Uglerudnaya industrial railway station, located in Temirtau, Kazakhstan. The station features a total of 56 switches and 52 track sections to enable the smooth flow of train traffic. To ensure the safety of all trains, an interlocking system is used to establish secure routes for incoming, outgoing, and passing trains. This requires effective traffic management and a dependable train detection system to detect the presence of trains on the tracks.
Data TransmissionUnited Kingdom of Great Britain and Northern Ireland

Headbolt Lane to Rainford Project

As part of the project to expand Merseyrail services, the operator needed to address the challenge of transmitting indication information over a specific section, spanning from Headbolt Lane to Rainford. In this instance, Frauscher’s technology was utilised to fulfill the data transmission requirements of this project, avoiding expensive and time consuming cabling that would have otherwise been required.
Train DetectionCanada

Edmonton Metro Line

The Edmonton Metro Line was experiencing significant issues with its newly installed Communications Based Train Control (CBTC) signalling system, which did not perform to the operator‘s expectations. The city was forced to run an incomplete schedule with reduced train speed and frequency which negatively affected commuters and the city of Edmonton in general. Finally in 2019, the operator decided to install a new system in cooperation with Frauscher.
Train DetectionGermany

Dillinger Hütte

A new ladder track was required to provide more parking tracks in the steel plant. At the same time, the layout of the dead end tracks were optimised and the efficiency of the whole depot improved by installing the Frauscher Advanced Counter FAdC®i in combination with the wheel sensor RSR180. With the implementation of the Frauscher Diagnostic System FDS, the overall maintenance costs can be significantly reduced.