Frauscher Sensor Technology has completed the divestiture to Wabtec Corporation.

Find Out More
Charlotte Area Transit System (CATS) Supplementing Audio Frequency Track Circuits with Axle Counters | USA
Train DetectionUnited States of America

Charlotte Area Transit System (CATS) Supplementing Audio Frequency Track Circuits with Axle Counters

Operator
Charlotte Area Transit System
Country
United States of America
Partner
HNTB
Segment
Metro
Application
Level Crossing Protection
Products
FAdC®, RSR180
Year
2022
Scope of project
6 counting heads

At the Charlotte Area Transit System, frequent false red signal overruns resulted when electromagnetic interference caused “bobbing” of the line’s audio frequency track circuits. The Frauscher Advanced Counter FAdC® was subsequently considered as an alternative to these track circuits to eliminate the occurrence of false red signal overruns.

The operators of the Charlotte Area Transit System, at the advice of consultant HNTB, agreed to utilise the FAdC® for a shadow mode trial to determine if it would solve its prevalent issue of false red signal overruns. The main reason for consideration of the axle counter was its high immunity to the electromagnetic interference, which was causing this issue, as well as its ability to interoperate with the existing audio frequency track circuits. The trial was conducted at the Archdale Interlocking for nine and a half months, generating the expected positive results. The data indicated that although numerous events of track circuit “bobbing” occurred during the trial period and generated false overruns, the axle counter data showed that if it had been in service, these overruns would have been prevented.

The FAdC® was able to increase the availability and safety, ensuring consistent and smooth operation of this light rail line. The axle counters were then used to entirely replace the existing AF track circuits, after the vital testing was successfully completed and the personnel was fully trained. After finalisation of these important steps, the Frauscher Advanced Counter FAdC® was placed in revenue service.

Elimination of false red signal overruns

Protection against environmental conditions and electromagnetic interference

Similar Projects
This might also interest you
1/5
Train DetectionSerbia

Hungary-Serbia Railway Project

The Hungary-Serbia Railway Project is an iconic project of the “One Belt One Road” Initiative between China and CEE countries. Frauscher provides not only high-quality solutions but also detailed technical support and clarification.
Train DetectionFinland

Kokkola

Frauscher supplied one of Finland’s busiest railway lines with new Axle Counters. The line was extended from a single to a double track section and Mipro was looking for a solution which can interface with their interlocking system in an efficient and cost effective way.
Train DetectionIndia

Ensuring reliable rail operations across India´s longest rail-road bridge

The Bogibeel Bridge is India’s longest rail-road bridge that connects Assam and Arunachal Pradesh, carrying both rail and road traffic across the Brahmaputra River. Harsh environmental conditions and structural constraints made conventional signalling unworkable. The Frauscher Advanced Counter FAdC® axle counting system was selected for its proven reliability and low maintenance under these challenging conditions.
Train DetectionUnited States of America

Reducing Delays in a Metro (subway) Environment

A large metro operator was researching ways to reduce bottlenecks that were causing significant delays at a busy station. With two routes dividing in close proximity to the station and a complex auto-routing system that required the use of a 30-second timer to release switches, trains would frequently back up when approaching the station.
Train DetectionChina

Beijing Metro Line 12

The Beijing Metro Line 12 is the first metro line that combines Frauscher Advanced Counter FAdC® and Railway Signal Safety Protocol Type I (RSSP-I). The line (from Sijiqingqiao Station to Dongbabei Station) was placed into full operation on 15 December 2024.