Frauscher Sensor Technology has completed the divestiture to Wabtec Corporation.

Find Out More
Beijing Metro Line 12 | China
Train DetectionChina

Beijing Metro Line 12

Operator
Beijing Metro
Country
China
Segment
Urban
Application
Track Vacancy Detection
Products
RSR180, FAdC®
Protocols
Proprietary protocols
Year
2024
Scope of project
Approx. 263 counting heads

The Beijing Metro Line 12 is the first metro line that combines Frauscher Advanced Counter FAdC® and Railway Signal Safety Protocol Type I (RSSP-I). The line (from Sijiqingqiao Station to Dongbabei Station) was placed into full operation on 15 December 2024.

Beijing Metro Line 12 is a metro project in northern Beijing. It is 27.5 km long with 20 stations, located in one of the busiest commuting areas, connecting four major urban districts. It is the first metro line that uses the Frauscher Advanced Counter FAdC® with software interface as a CBTC fallback system in Beijing.

Furthermore, following the combination of the Frauscher Communication board (COM) and the Railway Signal Safety Protocol (RSSP) that has been implemented successfully in Huangpu Tram T1 of Guangzhou and the Fenghuang Maglev Line in Hunan Province, Line 12 is also the first metro line that uses this proven technology.

The RSSP is mentioned in the standard specification for the Chinese railway industry, which has been commonly applied for data transmission in the CBTC system. Frauscher’s technical team has developed the communication board that supports the RSSP protocol (COM-RSSP) and successfully obtained the CENELEC SIL 4 Certification two years ago.

Software interface

Frauscher Advanced Counter FAdC® is able to communicate with higher-level systems via the Ethernet interface using customised protocols. The protocols RSSP and FSFB have been used in China.

Installation friendly

The tail cable of Wheel Sensor RSR180 and Frauscher Rail Claw SK150 are specially designed for easy installation without track drilling.

Similar Projects
This might also interest you
1/5
Train DetectionSpain

Three-rail Castellbisbal

The dual-gauge system of the Spanish railway network is quite challenging in terms of track vacancy detection: Wheel sensors must be installed on two rails next to each other in tight spaces and have to detect axles reliably on the respective rail. Frauscher developed a solution which copes also with the complexity of different interlocking technology in the stations along the line.
Train DetectionDenmark

Renewal signalling FAdC® and RSR123

Banedanmark, the Danish railway infrastructure owner, started replacing the existing signalling system in the Eastern region of Denmark in 2009 to implement the newest proven signalling technology, based on standard industrial hardware components and redundant system configurations. Uniform system interfaces should reduce signalling failures to provide a better reliability and punctuality of the entire network. For this project, Frauscher delivered the Frauscher Advanced Counter FAdC® and the Frauscher Wheel Sensor RSR123.
Train DetectionUnited States of America

Charlotte Area Transit System (CATS) Supplementing Audio Frequency Track Circuits with Axle Counters

At the Charlotte Area Transit System, frequent false red signal overruns resulted when electromagnetic interference caused “bobbing” of the line’s audio frequency track circuits. The Frauscher Advanced Counter FAdC® was subsequently considered as an alternative to these track circuits to eliminate the occurrence of false red signal overruns.
Train DetectionTaiwan

Shalun Signaling

The Shalun Line is frequented by four-car-trains and located in the south of Taiwan. Tropical conditions with temperatures between 22 and 28 degrees and high humidity are not the only challenge the Frauscher Axle Counter Solution has to deal with.
Train DetectionChina

Tram Huangpu Line 1

Tram Huangpu Line 1 (HP1) line is located in urban areas with high traffic density and passenger volume as well as many level crossings. The adverse weather conditions can cause flooding of the track bed and add to the challenges for reliable system availability and operations.