MTA Baltimore North Avenue Yard | USA
train-detectionUnited States of America

MTA Baltimore North Avenue Yard | USA

Operator
MTA Maryland
Country
United States of America
Partner
M.C. Dean
Segment
Main & Regional Line
Application
Track Vacancy Detection
Year
2015
Scope of project
31 wheel sensors

In this project, reliable and precise train detection was needed to automate the yard and significantly increase efficiency and safety. To meet these requirements, the Frauscher Advanced Counter FAdCi and Wheel Sensors RSR180 were selected for this automation project.

The MTA Baltimore North Avenue Yard is a light rail vehicle maintenance and storage facility. Faced with operational and safety concerns due to manual switch operations requiring train drivers to leave their vehicles, the Maryland Transit Authority (MTA) sought to automate the yard to improve safety and efficiency. In addition, the MTA was looking for speed measurement and storage track monitoring capabilities. Together with integrator M.C. Dean, the operator chose the Frauscher Advanced Counter FAdCi with Wheel Sensors RSR180 for this project. The Frauscher axle counting system was integrated with the Schneider Electric Quantum PLC, with the Programmable Logic Controller connected to the FAdCi using the FSE protocol to consolidate data from all evaluation boards. The FAdCi also provides additional advantages, such as the aforementioned Frauscher Safe Ethernet FSE protocol that reduced wiring and maintenance costs, allowing the seamless exchange of data. The FAdCi's modular design provides flexibility to distribute the system across multiple locations using an Ethernet connection to exchange information. Its software-based output avoids the high maintenance costs associated with traditional relays that require bonds and joints.

In addition, the installation of this solution did not require drilling or any track modifications, which considerably simplified the entire process and reduced costs. Frauscher provided training to enable MTA staff to operate and maintain the system independently, further improving its cost-effectiveness. The FAdCi also provides real-time data regarding the number of axles stored in a track section to determine space and availability, leading to greater efficiency and smoother operations.

Enhanced Safety

Operators no longer need to exit the vehicle to throw switches, reducing the risk of accidents.

Cost-Effectiveness

The robust solution offered by Frauscher provides a high level of reliability and availability that minimizes system downtime. The ability of trained MTA staff to operate and maintain the system independently further reduces costs.

Operational Efficiency

Real-time data enables better scheduling and yard management, improving the overall flow of vehicle movements and storage track monitoring.

Similar Projects
This might also interest you
1/5
train-detectionCanada

City of Calgary Grade Crossing Upgrade | Canada

The City of Calgary in Alberta, Canada was seeking an upgrade to the existing signaling system at a crossing near a station in the downtown area, to alleviate shunt issues caused by winter conditions. The Frauscher Advanced Counter FAdC and Wheel Sensors RSR180 were chosen to augment the existing system. During the eleven month trial period, the axle counter ran in shadow mode with the legacy system to gauge performance and compatibility. After the axle counter was proven during the trial with no faults or errors, the city was able to implement a hybrid crossing design using both the axle counting system and track circuits.
train-detectionChina

Chengdu Tram Line 2 | China

Chengdu Tram Line, located in the capital Chengdu City of Sichuan Province, is the first tram line to be operational in the city since 2018.
train-detectionUnited Kingdom of Great Britain and Northern Ireland

London to Corby | UK

The project was part of Network Rail’s Midland Main line electrification programme and involved re-signalling between Bedford and Kettering. The goal is the reduction of industry costs and environmental benefits through lighter rolling stock, reduced fuel costs and lower carbon emissions.
train-detectionPoland

Metro Warsaw | Poland

Metro Warsaw was looking for an alternative to track circuits for the line M2, to increase the availability of public transport by using reliable signalling technology. In the end, the operator even decided to replace the existing track circuits on line M1 with the Frauscher Axle Counter ACS200.
train-detectionIndia

Western Dedicated Freight Corridor (Rewari – Makarpura) | India

The Western Dedicated Freight Corridor (WDFC) represents one of the most strategically significant freight transportation projects in India. By facilitating the seamless transport of goods between major economic hubs, the intention is that the WDFC will significantly boost economic growth and development in the local region and beyond, further underlying the importance of this project.