MTA Baltimore North Avenue Yard | USA
train-detectionUnited States of America

MTA Baltimore North Avenue Yard | USA

Operator
MTA Maryland
Country
United States of America
Partner
M.C. Dean
Segment
Main & Regional Line
Application
Track Vacancy Detection
Year
2015
Scope of project
31 wheel sensors

In this project, reliable and precise train detection was needed to automate the yard and significantly increase efficiency and safety. To meet these requirements, the Frauscher Advanced Counter FAdCi and Wheel Sensors RSR180 were selected for this automation project.

The MTA Baltimore North Avenue Yard is a light rail vehicle maintenance and storage facility. Faced with operational and safety concerns due to manual switch operations requiring train drivers to leave their vehicles, the Maryland Transit Authority (MTA) sought to automate the yard to improve safety and efficiency. In addition, the MTA was looking for speed measurement and storage track monitoring capabilities. Together with integrator M.C. Dean, the operator chose the Frauscher Advanced Counter FAdCi with Wheel Sensors RSR180 for this project. The Frauscher axle counting system was integrated with the Schneider Electric Quantum PLC, with the Programmable Logic Controller connected to the FAdCi using the FSE protocol to consolidate data from all evaluation boards. The FAdCi also provides additional advantages, such as the aforementioned Frauscher Safe Ethernet FSE protocol that reduced wiring and maintenance costs, allowing the seamless exchange of data. The FAdCi's modular design provides flexibility to distribute the system across multiple locations using an Ethernet connection to exchange information. Its software-based output avoids the high maintenance costs associated with traditional relays that require bonds and joints.

In addition, the installation of this solution did not require drilling or any track modifications, which considerably simplified the entire process and reduced costs. Frauscher provided training to enable MTA staff to operate and maintain the system independently, further improving its cost-effectiveness. The FAdCi also provides real-time data regarding the number of axles stored in a track section to determine space and availability, leading to greater efficiency and smoother operations.

Enhanced Safety

Operators no longer need to exit the vehicle to throw switches, reducing the risk of accidents.

Cost-Effectiveness

The robust solution offered by Frauscher provides a high level of reliability and availability that minimizes system downtime. The ability of trained MTA staff to operate and maintain the system independently further reduces costs.

Operational Efficiency

Real-time data enables better scheduling and yard management, improving the overall flow of vehicle movements and storage track monitoring.

Similar Projects
This might also interest you
1/5
data-transmissionUnited Kingdom of Great Britain and Northern Ireland

Headbolt Lane to Rainford Project | United Kingdom

As part of the project to expand Merseyrail services, the operator needed to address the challenge of transmitting indication information over a specific section, spanning from Headbolt Lane to Rainford. In this instance, Frauscher’s technology was utilised to fulfill the data transmission requirements of this project, avoiding expensive and time consuming cabling that would have otherwise been required.
train-detectionUnited States of America

Tracking Trains in Houston | USA

Houston MetroRail (METRO for short) is comprised of three light-rail lines covering 22 miles. Two-car, low-floor trainsets are powered by overhead catenary and operated on a mix of rail types, including embedded, grooved, concrete, and ballasted track. Harsh weather conditions such as extreme heat, humidity, and storms with heavy rains causing floods are typical for Houston. Combined with the variable track structure this caused significant malfunctions of the wheel sensors of METRO’s signalling system.
train-detectionUnited Kingdom of Great Britain and Northern Ireland

Churnet Valley Heritage Railway | UK

The Churnet Valley Heritage Railway preserves England's rich heritage of steam-powered rail transport.
train-detectionKazakhstan

FAdC at Uglerudnaya Station | Kazakhstan

AcelorMittal is the operator of the Uglerudnaya industrial railway station, located in Temirtau, Kazakhstan. The station features a total of 56 switches and 52 track sections to enable the smooth flow of train traffic. To ensure the safety of all trains, an interlocking system is used to establish secure routes for incoming, outgoing, and passing trains. This requires effective traffic management and a dependable train detection system to detect the presence of trains on the tracks.
train-detectionUnited States of America

Charlotte Area Transit System (CATS) Supplementing Audio Frequency Track Circuits with Axle Counters | USA

At the Charlotte Area Transit System, frequent false red signal overruns resulted when electromagnetic interference caused “bobbing” of the line’s audio frequency track circuits. The Frauscher Advanced Counter FAdC was subsequently considered as an alternative to these track circuits to eliminate the occurrence of false red signal overruns.