Kokkola | Finland
train-detectionFinland

Kokkola

Operator
Finnish Transport Infrastructure Agency
Country
Finland
Partner
Mipro
Segment
Main & Regional Line
Application
Track Vacancy Detection
Products
RSR123, FAdC
Protocols
Frauscher Safe Ethernet FSE
Year
2019
Scope of project
275 sensors on open line 75 sensors in Ylivieska station

Frauscher supplied one of Finland’s busiest railway lines with new axle counters. The line was extended from a single to a double track section and Mipro was looking for a solution which can interface with their interlocking system in an efficient and cost effective way. Other important criteria was a minimum maintenance requirement and outdoor equipment which can cope with the harsh environmental conditions in Finland.

The railway section between Kokkola and Ylivieska is one of Finland’s busiest lines where trains reach up to 200 km/h. Environmental conditions in Finland are harsh: heavy snow and extreme cold temperatures are common during winter.

The Finnish Transport Agency planned to extend the railway section between Kokkola and Ylivieska from a single to a double track section. This project was one of the most comprehensive signalling system projects ever conducted in Finland. Obviously, the project needed to be performed without affecting the regular train operation.

The Frauscher Wheel Sensor RSR123 has proven its reliability even under harshest environmental conditions and combined with the Frauscher Advanced Counter FAdC, it was the system of choice for this project. This combination allows to detect high speed trains under the very demanding environment given on this line. Using the Frauscher Safe Ethernet FSE protocol significantly sped up the installation and reduced the costs for the entire project. Based on training, the customer was able to configure the system by themselves – thanks to the open interfaces and configuration process.

Saving costs by realising mixed architectures

The FAdC indoor equipment is located in numerous signaling shelters along the track. This saves massive costs in terms of cabling requirements due to short distances from the sensor to the evaluation board.

System status always on screen

The Frauscher Diagnostic System FDS allows remote access to valuable data for planning and conduction of preventive and predictive maintenance work.

Similar Projects
This might also interest you
1/5
train-detectionUnited States of America

Tracking Trains in Houston

Houston MetroRail (METRO for short) is comprised of three light-rail lines covering 22 miles. Two-car, low-floor trainsets are powered by overhead catenary and operated on a mix of rail types, including embedded, grooved, concrete, and ballasted track. Harsh weather conditions such as extreme heat, humidity, and storms with heavy rains causing floods are typical for Houston. Combined with the variable track structure this caused significant malfunctions of the wheel sensors of METRO’s signalling system.
train-detectionTaiwan

Shalun Signaling

The Shalun Line is frequented by four-car-trains and located in the south of Taiwan. Tropical conditions with temperatures between 22 and 28 degrees and high humidity are not the only challenge the Frauscher Axle Counter Solution has to deal with.
train-detectionKazakhstan

FAdC at Vhodnaya Station

ArcelorMittal is responsible for the operation of a dedicated industrial railway infrastructure located in Temirtau, Kazakhstan. At Vhodnaya station, an essential shunting yard, various goods and materials, such as polyester, zinc, aluminium, sinter, iron ore, and coke-chemical products, are loaded and unloaded. The station's robust infrastructure features 64 switching points and 68 signals, necessitating the use of a high-performing train detection system to ensure the safe and efficient management of traffic flow.
train-detectionCanada

City of Calgary Grade Crossing Upgrade

The City of Calgary in Alberta, Canada was seeking an upgrade to the existing signaling system at a crossing near a station in the downtown area, to alleviate shunt issues caused by winter conditions. The Frauscher Advanced Counter FAdC and Wheel Sensors RSR180 were chosen to augment the existing system. During the eleven month trial period, the axle counter ran in shadow mode with the legacy system to gauge performance and compatibility. After the axle counter was proven during the trial with no faults or errors, the city was able to implement a hybrid crossing design using both the axle counting system and track circuits.
train-detectionFrance

Homologation for the Île-de-France tramway network

The network of Île-de-France tramways in the region of Paris has been a showcase model of public transport since the line T1 opened in 1992. Over a million passengers use these trams daily and today, the system consists of 11 lines covering over 100 kilometres of track. Over the next years it is planned to expand this network even further. For track vacancy detection, the Frauscher axle counting system is considered as being the ideal solution for this comprehensive network.