Western Dedicated Freight Corridor (Rewari – Makarpura) | India
Train DetectionIndia

Western Dedicated Freight Corridor (Rewari – Makarpura)

Operator
Dedicated Freight Corridor Cooperation India Limited
Country
India
Partner
Hitachi India Pvt. Ltd.
Segment
Freight Line
Application
Track Vacancy Detection
Products
RSR180, FAdC
Year
2016
Scope of project
4516 counting heads

The Western Dedicated Freight Corridor (WDFC) represents one of the most strategically significant freight transportation projects in India. By facilitating the seamless transport of goods between major economic hubs, the intention is that the WDFC will significantly boost economic growth and development in the local region and beyond, further underlying the importance of this project.

As part of WDFC's ambitious objectives, the Dedicated Freight Corridor Corporation of India Limited (DFCCIL) sought a modern and reliable track vacancy detection system, capable of ensuring minimal downtime and optimised traffic flow, contributing to smooth and efficient rail operations.

After careful consideration, the Frauscher Advanced Counter FAdC was selected due to the many benefits that the system presents for operators. The FAdC fully adheres to the stringent safety requirements stipulated by Safety Integrity Level 4, making it an ideal solution for vital applications, including track vacancy detection. Furthermore, its high levels of availability and reliability contribute to an increased network uptime which in turn saves significant resources for the operator. In this case, the integration of the FAdC into higher ranking systems including Hitachi’s electronic interlocking is done via a serial interface using the COM-FSE protocol, eliminating the usage of relays and additional wiring which reduces the overall cost, system complexity and maintenance requirements.

Seamless integration into existing systems

Frauscher Advanced Counter FAdC was integrated quickly and easily into Hitachi’s electronic interlocking via a serial interface using the COM-FSE protocol. This has eliminated the usage of relays and additional wiring which reduces the overall cost and project complexity.

Highly resistant to adverse weather and track conditions

Wheel Sensor RSR180 functions even in adverse weather and environmental conditions with frequent flooding at the trackside.

Exhaustive technical service

Frauscher provides not only high-performance products but also detailed technology clarification and on-site training.

This project is designed according to a distributed architecture, which again significantly diminishes the necessity for extra cabling, thus lowering the overall costs. This cost saving is especially notable due to the total size of the project, featuring 4,516 counting heads. This is a unique project as a large number of counting heads are connected on one common industrial ethernet network configured for redundancy and high availability using modern networking technology. This also demonstrates Frauscher’s capability to design, configure, integrate and deliver such a large project with speed, ease and quality. 

In this instance, the FAdC was chosen in conjunction with the Frauscher Wheel Sensor RSR180 which is not only renowned for its safety in line with SIL4 requirements, but also overall reliability, as it is used in projects worldwide with proven success. One notable benefit of the RSR180 is its resistance to adverse weather conditions such as high humidity and temperature, as well as challenging track conditions including dirt, dust and debris. The sensor also holds IP68 rating against water ingress, making it ideal for projects with frequent flooding at the trackside. The installation of the RSR180 sensors was made easy and convenient thanks to the patented Frauscher Rail Claw SK140, which eradicated the need for any drilling into the rail. Consequently, the overall cost of installation and dwell time of staff on site was significantly reduced.

Similar Projects
This might also interest you
1/5
Train DetectionIndia

Ensuring reliable rail operations across India´s longest railroad bridge

The Bogibeel Bridge is India’s longest railroad bridge that connects Assam and Arunachal Pradesh, carrying both rail and road traffic across the Brahmaputra River. Harsh environmental conditions and structural constraints made conventional signaling impractical. The Frauscher Advanced Counter FAdC axle counting system was selected for its proven reliability and low maintenance requirements, even in challenging conditions.
Train DetectionFrance

Axle counting adds fail-safe control to laser diagnostics

When MERMEC set out to install a laser-based Wheel Profile Measurement System in close proximity to the Eurotunnel, they faced a critical challenge: how to avoid unintended laser exposure without compromising the system’s ability to inspect up to 200 trains per day. To meet these requirements, MERMEC partnered with Frauscher.
Train DetectionUnited States of America

Class 1 Grade Crossing Enhancement FAdC and RSR180

Frauscher was approached by a US Class 1 railroad regarding a grade crossing owned and operated by them, on a track crossing a public road. The operator’s main goal was to find a signaling solution that would seamlessly integrate with the current crossing controller and keep the crossing operational under challenging operational conditions. The Frauscher Advanced Counter FAdC and Wheel Sensor RSR180 were chosen as the ideal solution for this particular project.
Train DetectionUnited States of America

MTA Baltimore North Avenue Yard

In this project, reliable and precise train detection was needed to automate the yard and significantly increase efficiency and safety. To meet these requirements, the Frauscher Advanced Counter FAdCi and Wheel Sensors RSR180 were selected for this automation project.
Train DetectionCanada

City of Calgary Grade Crossing Upgrade

The City of Calgary in Alberta, Canada was seeking an upgrade to the existing signaling system at a crossing near a station in the downtown area, to alleviate shunt issues caused by winter conditions. The Frauscher Advanced Counter FAdC and Wheel Sensors RSR180 were chosen to augment the existing system. During the eleven month trial period, the axle counter ran in shadow mode with the legacy system to gauge performance and compatibility. After the axle counter was proven during the trial with no faults or errors, the city was able to implement a hybrid crossing design using both the axle counting system and track circuits.