Fenghuang Maglev | China
Train DetectionChina

Fenghuang Maglev

Operator
Hunan Maglev Group Co.
Country
China
Segment
Main & Regional Line
Application
Track Vacancy Detection
Products
RSR180, FAdC
Protocols
Proprietary protocols
Year
2022
Scope of project
67 detection points

Fenghuang Maglev is a medium-low speed maglev rapid transit line. Since maglev trains do not have wheels, traditional wheel-based detection systems cannot be directly applied to maglev traffic engineering. Therefore, to ensure that the wheel detection system functions correctly and is able to accurately detect the position of the maglev train, the project is implemented with detection plates mounted on the bottom of the maglev train. Fenghuang Maglev is the first tourist maglev line in China.

The Fenghuang Maglev line can operate at speeds up to 100 km/h. Its first phase is 9,12 km long with 4 stations and has been put into the test operation in May 2022.

Due to the signal system requirements of the operation mode of medium and low speed maglev trains, the train’s position must be detected in a timely and reliable way. However, the levitation of the train is achieved due to the existence of electromagnetic forces between the electromagnet and the track which ensures that the train runs without any physical contact, which is one of the pain points in detecting the axles of the train. Moreover, traditional wheel-based detection systems cannot be directly applied to maglev traffic engineering.

To overcome these issues, we have used the Frauscher Advanced Counter FAdC – being the first maglev line in the world using this technology - which has obtained the CENELEC SIL 4 Certification, providing a protocol-based fully electronic interface. The Frauscher Wheel Sensor RSR180 was also used due to its ability to withstand electromagnetic interference disturbances and flexible installation methods. Frauscher communication boards which support the Railway Signal Safety Protocol (RSSP) protocol have been implemented. This protocol has been widely applied in the CBTC of passenger dedicated lines in China.

Flexible and universally applicable interfaces

The FAdC provides a protocol-based fully electronic interface. Its functional modularity and flexible scalability enable the unification of small central facilities and complex system operations.

Secure and reliable operation

Fenghuang Maglev is the first maglev line in the world to use the Frauscher Advanced Counter FAdC. The FAdC is our new generation axle counting system, which has obtained the CENELEC SIL 4 Certification.

Resistance to magnetic flux leakage

The Frauscher Wheel Sensor RSR180 was chosen for this project due to its ability to withstand electromagnetic interference disturbances. Besides this, the RSR180 also has a flexible installation method.

Similar Projects
This might also interest you
1/5
Train DetectionFrance

Axle counting adds fail-safe control to laser diagnostics

When MERMEC set out to install a laser-based Wheel Profile Measurement System in close proximity to the Eurotunnel, they faced a critical challenge: how to avoid unintended laser exposure without compromising the system’s ability to inspect up to 200 trains per day. To meet these requirements, MERMEC partnered with Frauscher.
Train DetectionChina

Chengdu Tram Line 2

Chengdu Tram Line, located in the capital Chengdu City of Sichuan Province, is the first tram line to be operational in the city since 2018.
Train DetectionIndia

Increasing Availability at Adra Yard

Adra Yard belongs to the Southeastern Railway Zone of Indian Railways and is in West Bengal. Initially the yard was equipped with track circuits and there was a requirement to get them replaced with the Frauscher Advanced Counter FAdC. This project is one of Frauscher’s esteemed Indian Railway Projects with a coverage of 139 counting heads and 97 track sections.
Train DetectionIndia

Ensuring reliable rail operations across India´s longest railroad bridge

The Bogibeel Bridge is India’s longest railroad bridge that connects Assam and Arunachal Pradesh, carrying both rail and road traffic across the Brahmaputra River. Harsh environmental conditions and structural constraints made conventional signaling impractical. The Frauscher Advanced Counter FAdC axle counting system was selected for its proven reliability and low maintenance requirements, even in challenging conditions.
Train DetectionSpain

Three-rail Castellbisbal

The dual-gauge system of the Spanish railway network is quite challenging in terms of track vacancy detection: Wheel sensors must be installed on two rails next to each other in tight spaces and have to detect axles reliably on the respective rail. Frauscher developed a solution which copes also with the complexity of different interlocking technology in the stations along the line.