Renewal signalling FAdC® and RSR123 | Denmark

Banedanmark, the Danish railway infrastructure owner, started replacing the existing signalling system in the Eastern region of Denmark in 2009 to implement the newest proven signalling technology, based on standard industrial hardware components and redundant system configurations. Uniform system interfaces should reduce signalling failures to provide a better reliability and punctuality of the entire network. For this project, Frauscher delivered the Frauscher Advanced Counter FAdC® and the Frauscher Wheel Sensor RSR123.

When replacing the existing signalling system in the Eastern region of Denmark with Alstom’s proven Atlas solution, Frauscher delivered both, the Frauscher Advanced Counter FAdC® and the Frauscher Wheel Sensor RSR123.

To ensure a complete and smooth integration of the Frauscher Advanced Counter into the design of the interlocking system, Alstom’s interface protocol FSFB2 has been implemented into the FAdC®. Due to this, all required information such as configuration files and design documentation can be generated automatically. This allows a significant reduction of the configuration and test outlay and increases the flexibility of further changes during the project without a considerable increase in additional costs.

Frauscher Diagnostic System FDS offers a software interface to allow a total integration of FAdC® diagnostics into operator’s overall diagnostic and maintenance system.

The use of the RSR123 increases the reliability in conditions of strong electromagnetic interferences. As no active electronic components are used on the trackside, the availability of this Frauscher wheel detection system is extremely high.

Reduction of life cycle costs

The preventative maintenance, optimisation of fault rectification, unrestricted online access to the axle counting system data and the minimisation of maintenance work led to a reduction in life cycle costs.

Reduction of configuration outlay

A complete integration of the Frauscher Advanced Counter FAdC allows an automatic generation of configuration files and design documents to reduce the configuration and test outlay.

Less calibration errors

The automatic calibration process, which can be triggered remotely makes sure the user spends as little time as possible on the track and helps avoiding calibration errors.

Project details
Country or region
Main Lines
Axle Counting
Frauscher Advanced Counter FAdC with FSFB2 interface
Wheel Detection
Wheel Sensor RSR123 with rail claw
Track vacancy detection
Similar projects

This might also interest you

Frauscher Train Detection Metro Warsaw

Metro Warsaw | Poland

Metro Warsaw was looking for an alternative to track circuits for the line M2, to increase the availability of public transport by using reliable signalling technology. In the end, the operator even decided to replace the existing track circuits on line M1 with the Frauscher Axle Counter ACS200.

Dillinger Hütte | Germany

A new ladder track was required to provide more parking tracks in the steel plant. At the same time, the layout of the dead end tracks were optimised and the efficiency of the whole depot improved by installing the Frauscher Advanced Counter FAdCi® in combination with the wheel sensor RSR180. With the implementation of the Frauscher Diagnostic System FDS, the overall maintenance costs can be significantly reduced.

Edmonton Metro Line | Canada

The Edmonton Metro Line was experiencing significant issues with its newly installed Communications Based Train Control (CBTC) signalling system, which did not perform to the operator‘s expectations. The city was forced to run an incomplete schedule with reduced train speed and frequency which negatively affected commuters and the city of Edmonton in general. Finally in 2019, the operator decided to install a new system in cooperation with Frauscher.