Frauscher Sensor Technology has completed the divestiture to Wabtec Corporation.

FAdC® at Uglerudnaya Station | Kazakhstan
Train DetectionKazakhstan

FAdC® at Uglerudnaya Station

Operator
ArcelorMittal Temirtau
Country
Kazakhstan
Partner
Kazcenterelectroprovod (KCEP)
Segment
Industrial & Mining
Application
Level Crossing Protection
Products
FAdC®, RSR180
Year
2017

AcelorMittal is the operator of the Uglerudnaya industrial railway station, located in Temirtau, Kazakhstan. The station features a total of 56 switches and 52 track sections to enable the smooth flow of train traffic. To ensure the safety of all trains, an interlocking system is used to establish secure routes for incoming, outgoing, and passing trains. This requires effective traffic management and a dependable train detection system to detect the presence of trains on the tracks.

The Uglerudnaya station in Temirtau, Kazakhstan handles various raw materials, including coal, ore, fluxes, and refractories.

In September 2018, the Frauscher Advanced Counter FAdC® was installed at the Uglerudnaya station, alongside 89 Frauscher Wheel Sensors RSR180 which were fitted in 52 track sections. The installation of the new system led to a significant reduction in lifecycle and maintenance costs, as well as a decrease in downtime due to train detection failures. Efficiency in traffic management and the use of freight cars also increased. Furthermore, another useful feature for the signalling staff is the confirmation of train integrity via the axle counter, as well as the individual reset options and comprehensive diagnostic facilities which provide the Uglerudnaya station with enhanced operational efficiency.

Lower maintenance costs

By installing the axle counter, lifecycle and maintenance costs have been reduced dramatically.

Greater efficiency

Efficiency in terms of traffic management and the use of freight cars has increased.

Increase in system availability

Increase in uptime due to no train detection failures, leading to greater availability.

Similar Projects
This might also interest you
1/5
Train Detection, ServicesIndia

Sini - Chandil Railway Line

The Sini-Chandil railway line is a crucial rail connection located in the state of Jharkhand, which lies in the eastern coastal region of India. This railway line holds significant strategic importance for the entire region, and now incorporates Frauscher solutions, including the Frauscher Advanced Counter FAdC®, Wheel Sensor RSR180 and the Frauscher Insights applications Diagnostics and Motion.
Train DetectionIndia

Ensuring reliable rail operations across India´s longest rail-road bridge

The Bogibeel Bridge is India’s longest rail-road bridge that connects Assam and Arunachal Pradesh, carrying both rail and road traffic across the Brahmaputra River. Harsh environmental conditions and structural constraints made conventional signalling unworkable. The Frauscher Advanced Counter FAdC® axle counting system was selected for its proven reliability and low maintenance under these challenging conditions.
Train DetectionUnited Kingdom of Great Britain and Northern Ireland

Churnet Valley Heritage Railway

The Churnet Valley Heritage Railway preserves England's rich heritage of steam-powered rail transport.
Train DetectionCanada

Toronto Transit Commission

The Toronto Transit Commission (TTC) Line 1 Yonge-University is Toronto’s longest subway line, with track circuits utilized for signalling. Due to an increasing number of daily passengers and an aged system the need for upgrading without interfering with the daily operations became readily apparent. It was further required that the new signalling system functions independently of the existing system. It would provide CBTC fallback functionalities, and work as an overlay to the current track circuit-based system.
Train DetectionUnited Kingdom of Great Britain and Northern Ireland

Wherry Lines

The Wherry Lines are railway branch lines in East Anglia in the East of England, linking Norwich – Great Yarmouth – Lowestoft. The project aimed to integrate Frauscher Advanced Counter FAdC into two external systems to mitigate against a train passing a red signal without authority on approach to level crossings.