Frauscher Sensor Technology has completed the divestiture to Wabtec Corporation.

Find Out More
Vijayawada – Gannavaram Rail Line | India
Train DetectionIndia

Vijayawada – Gannavaram Rail Line

Operator
Indian Railways - South Central Railway
Country
India
Partner
Progressive Engineering Enterprises
Segment
Main & Regional Line
Application
Track Vacancy Detection
Products
RSR180, FAdC®
Year
2017
Scope of project
88 counting heads, 44 track sections

The Vijayawada – Gannavaram rail line belongs to South Central Railway and is situated in Andhra Pradesh. Initially, the line featured a conventional signalling system and there was a requirement by the operator to update this into an automatic signalling system with the Frauscher Advanced Counter FAdC®. The project consists of 88 counting heads and 44 track sections and the type of architecture used in this project is a dual redundant distributed architecture with an Ethernet based communication for the automatic signalling system.

To fulfill the requirements of the operator, the Frauscher Wheel Sensor RSR180 along with the FAdC® and its highly configurable system architecture were used in this project. Additionally, the Supervisor Track Section STS function has also been implemented on this line for the purposes of auto resetting in case of false errors, again leading to greater system availability and reduced downtime.

The conversion from a conventional signalling system into an automatic signalling system for detecting trains has offered a wide array of benefits for the operator. Power consumption for every detection point is very low for the FAdC® which leads to cost saving for operators throughout the lifecycle of the system. Furthermore, deploying the FAdC® has enhanced the line capacity of the railway system and led to a reduction in the waiting time of trains for track vacancy clearance.

Increasing Availability

The FAdC® provides a dual detection system alongside COM, PSC and network redundancy which further enhances the availability of the system in the automatic block sections.

Greater Operational Efficiency

The automatic block section with FAdC® has been designed in a way that enables trains which travel in the same direction to follow each other in a safe manner, thus enhancing the line capacity of the railway system.

Similar Projects
This might also interest you
1/5
Train DetectionChina

Fenghuang Maglev

Fenghuang Maglev is a medium-low speed maglev rapid transit line. Since maglev trains do not have wheels, traditional wheel-based detection systems cannot be directly applied to maglev traffic engineering.
Train DetectionUnited Kingdom of Great Britain and Northern Ireland

London to Corby

The project was part of Network Rail’s Midland Main line electrification programme and involved re-signalling between Bedford and Kettering. The goal is the reduction of industry costs and environmental benefits through lighter rolling stock, reduced fuel costs and lower carbon emissions.
Train DetectionUnited Kingdom of Great Britain and Northern Ireland

Wherry Lines

The Wherry Lines are railway branch lines in East Anglia in the East of England, linking Norwich – Great Yarmouth – Lowestoft. The project aimed to integrate Frauscher Advanced Counter FAdC into two external systems to mitigate against a train passing a red signal without authority on approach to level crossings.
Train DetectionUnited Kingdom of Great Britain and Northern Ireland

Churnet Valley Heritage Railway

The Churnet Valley Heritage Railway preserves England's rich heritage of steam-powered rail transport.
Train DetectionUnited States of America

Tracking Trains in Houston

Houston MetroRail (METRO for short) is comprised of three light-rail lines covering 22 miles. Two-car, low-floor trainsets are powered by overhead catenary and operated on a mix of rail types, including embedded, grooved, concrete, and ballasted track. Harsh weather conditions such as extreme heat, humidity, and storms with heavy rains causing floods are typical for Houston. Combined with the variable track structure this caused significant malfunctions of the wheel sensors of METRO’s signalling system.