Reducing Delays in a Metro (subway) Environment | USA
Train DetectionUnited States of America

Reducing Delays in a Metro (subway) Environment

Country
United States of America
Segment
Urban
Application
Triggering of Systems
Products
RSR180, FAdC®
Year
2022
Scope of project
3 counting heads

A large metro operator was researching ways to reduce bottlenecks that were causing significant delays at a busy station. With two routes dividing in close proximity to the station and a complex auto-routing system that required the use of a 30-second timer to release switches, trains would frequently back up when approaching the station.

The primary goal for any busy Metro line is to move passengers safely and efficiently. When consistent and unnecessary delays interfere with such goals, operators eventually look for improvements. In this instance, consultants were tasked with finding a solution, focusing on the legacy signaling system that was unable to offer relief from the bottlenecks.

The main issue leading to delays involved the switch located directly after the station platform being locked in its position for 30 seconds when the approach is occupied. Stopped trains that require the switch to be thrown in reverse position would have to wait for a 30 second ASR (Approach Stick Relay) timer to expire.

In conjunction with the operator, Frauscher was able to design a simple wheel detection solution that positively verifies when a train is berthed at the station platform, allowing a bypass of the 30 second timer. The berthing is verified within 5 seconds, allowing unnecessary dwell time to be saved each time a train takes a route requiring the switch to be thrown. The operator reported dwell time reductions of 40 minutes per day since the system has been in service.

Improved Controls

More granular detection of berthed trains; vital and fail-safe system

Reduction in delays

Allows for quicker response times at timing circuits, providing relief at bottleneck areas and a daily savings of approximately 40 minutes dwell time per day

Ease of Integration

The flexibility of the Frauscher system allowed for a seamless integration with the existing relay-based signal system

Similar Projects
This might also interest you
1/5
Data TransmissionIndia

South Central Railway

The Vijayawada Division of Indian Railways introduced a new train detection system with data transmission functionality to overcome the challenges of the existing BPAC and conventional quad cable-based systems. Frauscher implemented the Frauscher Advanced Counter FAdC®, featuring full redundancy, advanced reset mechanisms and remote diagnostics. This upgrade delivers significant cost savings and enhanced system availability for the operator.
ServicesAustria

Salzburger Lokalbahn

Frauscher supported the Salzburger Lokalbahn, a regional railway in Austria, with a service assignment that included both the maintenance of Frauscher wheel sensors and axle counters as well as hands-on training for the installation personnel. The customer benefited from efficient troubleshooting and tailored training delivered directly on their own equipment.
Train DetectionGermany

Dillinger Hütte

A new ladder track was required to provide more parking tracks in the steel plant. At the same time, the layout of the dead end tracks were optimised and the efficiency of the whole depot improved by installing the Frauscher Advanced Counter FAdC®i in combination with the wheel sensor RSR180. With the implementation of the Frauscher Diagnostic System FDS, the overall maintenance costs can be significantly reduced.
Train DetectionTaiwan

Shalun Signaling

The Shalun Line is frequented by four-car-trains and located in the south of Taiwan. Tropical conditions with temperatures between 22 and 28 degrees and high humidity are not the only challenge the Frauscher Axle Counter Solution has to deal with.
Train DetectionUnited Kingdom of Great Britain and Northern Ireland

Axle Counter Overlay System

Between London St Pancras International Station and Farringdon Station, there is a history of frequent flooding through the tunnels that adversely affected the reliability of the existing train detection system. Due to this, the installation was non-operational during large periods. However, being a mainline section and a core route through London, high reciliation to any sort of failures is vital.