Reducing Delays in a Metro (subway) Environment | USA
train-detectionUnited States of America

Reducing Delays in a Metro (subway) Environment | USA

Country
United States of America
Segment
Urban
Application
Triggering of Systems
Products
RSR180, FAdC®
Year
2022
Scope of project
3 counting heads

A large metro operator was researching ways to reduce bottlenecks that were causing significant delays at a busy station. With two routes dividing in close proximity to the station and a complex auto-routing system that required the use of a 30-second timer to release switches, trains would frequently back up when approaching the station.

The primary goal for any busy Metro line is to move passengers safely and efficiently. When consistent and unnecessary delays interfere with such goals, operators eventually look for improvements. In this instance, consultants were tasked with finding a solution, focusing on the legacy signaling system that was unable to offer relief from the bottlenecks.

The main issue leading to delays involved the switch located directly after the station platform being locked in its position for 30 seconds when the approach is occupied. Stopped trains that require the switch to be thrown in reverse position would have to wait for a 30 second ASR (Approach Stick Relay) timer to expire.

In conjunction with the operator, Frauscher was able to design a simple wheel detection solution that positively verifies when a train is berthed at the station platform, allowing a bypass of the 30 second timer. The berthing is verified within 5 seconds, allowing unnecessary dwell time to be saved each time a train takes a route requiring the switch to be thrown. The operator reported dwell time reductions of 40 minutes per day since the system has been in service.

Improved Controls

More granular detection of berthed trains; vital and fail-safe system

Reduction in delays

Allows for quicker response times at timing circuits, providing relief at bottleneck areas and a daily savings of approximately 40 minutes dwell time per day

Ease of Integration

The flexibility of the Frauscher system allowed for a seamless integration with the existing relay-based signal system

Similar Projects
This might also interest you
1/5
train-detectionUnited Kingdom of Great Britain and Northern Ireland

Axle Counter Overlay System | UK

Between London St Pancras International Station and Farringdon Station, there is a history of frequent flooding through the tunnels that adversely affected the reliability of the existing train detection system. Due to this, the installation was non-operational during large periods. However, being a mainline section and a core route through London, high reciliation to any sort of failures is vital.
train-detectionGermany

Dillinger Hütte | Germany

A new ladder track was required to provide more parking tracks in the steel plant. At the same time, the layout of the dead end tracks were optimised and the efficiency of the whole depot improved by installing the Frauscher Advanced Counter FAdC®i in combination with the wheel sensor RSR180. With the implementation of the Frauscher Diagnostic System FDS, the overall maintenance costs can be significantly reduced.
train-detectionFinland

Kokkola | Finland

Frauscher supplied one of Finland’s busiest railway lines with new Axle Counters. The line was extended from a single to a double track section and Mipro was looking for a solution which can interface with their interlocking system in an efficient and cost effective way.
train-detectionFrance

Homologation for the Île-de-France tramway network | France

The network of Île-de-France tramways in the region of Paris has been a showcase model of public transport since the line T1 opened in 1992. Over a million passengers use these trams daily and today, the system consists of 11 lines covering over 100 kilometres of track. Over the next years it is planned to expand this network even further. For track vacancy detection, the Frauscher axle counting system is considered as being the ideal solution for this comprehensive network.
train-detectionUnited States of America

Tracking Trains in Houston | USA

Houston MetroRail (METRO for short) is comprised of three light-rail lines covering 22 miles. Two-car, low-floor trainsets are powered by overhead catenary and operated on a mix of rail types, including embedded, grooved, concrete, and ballasted track. Harsh weather conditions such as extreme heat, humidity, and storms with heavy rains causing floods are typical for Houston. Combined with the variable track structure this caused significant malfunctions of the wheel sensors of METRO’s signalling system.