Tracking Trains in Houston | USA
train-detectionUnited States of America

Tracking Trains in Houston | USA

Operator
MTA Houston
Country
United States of America
Partner
MEC Mass Electric Corp.
Segment
Main & Regional Line
Application
Track Vacancy Detection
Products
FAdC®, RSR180
Year
2016
Scope of project
565 wheel sensors, 103 equipment locations

Houston MetroRail (METRO for short) is comprised of three light-rail lines covering 22 miles. Two-car, low-floor trainsets are powered by overhead catenary and operated on a mix of rail types, including embedded, grooved, concrete, and ballasted track. Harsh weather conditions such as extreme heat, humidity, and storms with heavy rains causing floods are typical for Houston. Combined with the variable track structure this caused significant malfunctions of the wheel sensors of METRO’s signalling system.

In order to improve the system, METRO conducted trial installations with several suppliers of axle counter solutions to demonstrate features and the overall performance of their respective products. Due to the complicated track structure and environmental conditions, Frauscher quickly understood that the required wheel sensors had to be simple to install, immune to extreme heat as well as waterproof as floods could easily occur. The trial results demonstrated that the Frauscher Advanced Counter FAdC® met all of METRO’s requirements in terms of environmental influences, interfaces, reliability and seamless integration into the existing infrastructure.

The flexible design of the FAdC® allows efficient data transfer via relay interface to the traffic control system and interlocking. Additionally, two optional intelligent functions, Supervisor Track Sections and Counting Head Control, were used to counter the effects of unexpected influences such as metallic debris. The installed Frauscher Wheel Sensor RSR180 is extremely robust and not affected by any environmental influences.

In total, 565 Wheel Sensors RSR180 were installed along the rail line, and the axle counter Frauscher Advanced Counter FAdC® in 103 locations throughout the network to guarantee a flawless operation of the line.

Excellent match of requirements

The Frauscher axle counting solution met all of METRO’s environmental, interface and reliability requirements. The straightforward installation and smooth transition from the existing train detection system was highly appreciated by the operator.

Reduction of costs

The new system caused a significant reduction in down time and maintenance costs, which will continue to add up over the lifecycle of the system. The additional smart functionalities that were implemented increased the availability of the system even further.

Similar Projects
This might also interest you
1/5
train-detectionCanada

Toronto Transit Commission | Canada

The Toronto Transit Commission (TTC) Line 1 Yonge-University is Toronto’s longest subway line, with track circuits utilized for signalling. Due to an increasing number of daily passengers and an aged system the need for upgrading without interfering with the daily operations became readily apparent. It was further required that the new signalling system functions independently of the existing system. It would provide CBTC fallback functionalities, and work as an overlay to the current track circuit-based system.
train-detectionChina

Chengdu Tram Line 2 | China

Chengdu Tram Line, located in the capital Chengdu City of Sichuan Province, is the first tram line to be operational in the city since 2018.
train-detectionDenmark

Renewal signalling FAdC® and RSR123 | Denmark

Banedanmark, the Danish railway infrastructure owner, started replacing the existing signalling system in the Eastern region of Denmark in 2009 to implement the newest proven signalling technology, based on standard industrial hardware components and redundant system configurations. Uniform system interfaces should reduce signalling failures to provide a better reliability and punctuality of the entire network. For this project, Frauscher delivered the Frauscher Advanced Counter FAdC® and the Frauscher Wheel Sensor RSR123.
train-detectionUnited Kingdom of Great Britain and Northern Ireland

London to Corby | UK

The project was part of Network Rail’s Midland Main line electrification programme and involved re-signalling between Bedford and Kettering. The goal is the reduction of industry costs and environmental benefits through lighter rolling stock, reduced fuel costs and lower carbon emissions.
train-detectionChina

Fenghuang Maglev | China

Fenghuang Maglev is a medium-low speed maglev rapid transit line. Since maglev trains do not have wheels, traditional wheel-based detection systems cannot be directly applied to maglev traffic engineering.