Shalun Signaling | Taiwan
train-detectionTaiwan

Shalun Signaling | Taiwan

Operator
TRA Taiwan Railway Administration
Country
Taiwan
Segment
Main & Regional Line
Application
Track Vacancy Detection
Products
RSR180, ACS2000
Year
2009

The Shalun Line is frequented by four-car-trains and located in the south of Taiwan. Tropical conditions with temperatures between 22 and 28 degrees and high humidity are not the only challenge the Frauscher Axle Counter Solution has to deal with.

Taiwanese Railway Administration TRA is running the Shalun Line between the stations of Shalun, Chang Jung Christian University and ZhongZhou. It is located in the South of Taiwan, with challenging environmental conditions like high humidity and possible occurrences of floods, among others.

In 2009, the TRA decided to install a Frauscher Axle Counter Solution, based on the Frauscher Axle Counting System ACS2000 and Wheel Sensor RSR180, which has demonstrated maximum reliability and availability under the local requirements without a single malfunction to this day. The RSR180 handles floods and humidity with ease, as it is fully sealed according to IP68.

The robust wheel sensors are easily and quickly mounted without drilling the rail using the Frauscher rail claws. Within the established centralised architecture, no electronics had to be installed at track side, but in housings and cubicles at stations and depots, where they are protected from environmental influences.

Based on the satisfying results that have been achieved by installing this system, Frauscher successfully delivered more than 1800 detection points with the RSR180 and the ACS2000 over the years as they are 100% compliant with the TRA axle counting specifications.

Robust trackside equipment

Frauscher trackside equipment is developed to withstand harsh environments and functions entirely without any trackside electronics.

Easy mounting

The flexibility and modularity of Frauscher’s system enabled an individual, centralised design. By using the Frauscher rail claws the wheel sensors could be easily and quickly mounted without drilling the rail.

Similar Projects
This might also interest you
1/5
train-detectionCanada

Toronto Transit Commission | Canada

The Toronto Transit Commission (TTC) Line 1 Yonge-University is Toronto’s longest subway line, with track circuits utilized for signalling. Due to an increasing number of daily passengers and an aged system the need for upgrading without interfering with the daily operations became readily apparent. It was further required that the new signalling system functions independently of the existing system. It would provide CBTC fallback functionalities, and work as an overlay to the current track circuit-based system.
train-detectionUnited States of America

Frauscher Track Vacancy System FTVS Testing | USA

During the initial development phase of the Frauscher Track Vacancy System FTVS, a number of pre-production units were released for real-world testing to examine their performance in typical yard environments. Consequently, several trials were conducted in the United States.
train-detectionIndia

Western Dedicated Freight Corridor (Rewari – Makarpura) | India

The Western Dedicated Freight Corridor (WDFC) represents one of the most strategically significant freight transportation projects in India. By facilitating the seamless transport of goods between major economic hubs, the intention is that the WDFC will significantly boost economic growth and development in the local region and beyond, further underlying the importance of this project.
train-detectionUnited States of America

Tracking Trains in Houston | USA

Houston MetroRail (METRO for short) is comprised of three light-rail lines covering 22 miles. Two-car, low-floor trainsets are powered by overhead catenary and operated on a mix of rail types, including embedded, grooved, concrete, and ballasted track. Harsh weather conditions such as extreme heat, humidity, and storms with heavy rains causing floods are typical for Houston. Combined with the variable track structure this caused significant malfunctions of the wheel sensors of METRO’s signalling system.
train-detectionUnited States of America

Reducing Delays in a Metro (subway) Environment | USA

A large metro operator was researching ways to reduce bottlenecks that were causing significant delays at a busy station. With two routes dividing in close proximity to the station and a complex auto-routing system that required the use of a 30-second timer to release switches, trains would frequently back up when approaching the station.