Shalun Signaling | Taiwan
Train DetectionTaiwan

Shalun Signaling

Operator
TRA Taiwan Railway Administration
Country
Taiwan
Segment
Main & Regional Line
Application
Track Vacancy Detection
Products
RSR180, ACS2000
Year
2009

The Shalun Line is frequented by four-car-trains and located in the south of Taiwan. Tropical conditions with temperatures between 22 and 28 degrees and high humidity are not the only challenge the Frauscher Axle Counter Solution has to deal with.

Taiwanese Railway Administration TRA is running the Shalun Line between the stations of Shalun, Chang Jung Christian University and ZhongZhou. It is located in the South of Taiwan, with challenging environmental conditions like high humidity and possible occurrences of floods, among others.

In 2009, the TRA decided to install a Frauscher Axle Counter Solution, based on the Frauscher Axle Counting System ACS2000 and Wheel Sensor RSR180, which has demonstrated maximum reliability and availability under the local requirements without a single malfunction to this day. The RSR180 handles floods and humidity with ease, as it is fully sealed according to IP68.

The robust wheel sensors are easily and quickly mounted without drilling the rail using the Frauscher rail claws. Within the established centralised architecture, no electronics had to be installed at track side, but in housings and cubicles at stations and depots, where they are protected from environmental influences.

Based on the satisfying results that have been achieved by installing this system, Frauscher successfully delivered more than 1800 detection points with the RSR180 and the ACS2000 over the years as they are 100% compliant with the TRA axle counting specifications.

Robust trackside equipment

Frauscher trackside equipment is developed to withstand harsh environments and functions entirely without any trackside electronics.

Easy mounting

The flexibility and modularity of Frauscher’s system enabled an individual, centralised design. By using the Frauscher rail claws the wheel sensors could be easily and quickly mounted without drilling the rail.

Similar Projects
This might also interest you
1/5
Train DetectionPoland

Metro Warsaw

Metro Warsaw was looking for an alternative to track circuits for the line M2, to increase the availability of public transport by using reliable signalling technology. In the end, the operator even decided to replace the existing track circuits on line M1 with the Frauscher Axle Counter ACS200.
Train DetectionChina

Chengdu Tram Line 2

Chengdu Tram Line, located in the capital Chengdu City of Sichuan Province, is the first tram line to be operational in the city since 2018.
Train Detection, ServicesIndia

Sini - Chandil Railway Line

The Sini-Chandil railway line is a crucial rail connection located in the state of Jharkhand, which lies in the eastern coastal region of India. This railway line holds significant strategic importance for the entire region, and now incorporates Frauscher solutions, including the Frauscher Advanced Counter FAdC®, Wheel Sensor RSR180 and the Frauscher Insights applications Diagnostics and Motion.
Data TransmissionIndia

South Central Railway

The Vijayawada Division of Indian Railways introduced a new train detection system with data transmission functionality to overcome the challenges of the existing BPAC and conventional quad cable-based systems. Frauscher implemented the Frauscher Advanced Counter FAdC®, featuring full redundancy, advanced reset mechanisms and remote diagnostics. This upgrade delivers significant cost savings and enhanced system availability for the operator.
Train DetectionCanada

Toronto Transit Commission

The Toronto Transit Commission (TTC) Line 1 Yonge-University is Toronto’s longest subway line, with track circuits utilized for signalling. Due to an increasing number of daily passengers and an aged system the need for upgrading without interfering with the daily operations became readily apparent. It was further required that the new signalling system functions independently of the existing system. It would provide CBTC fallback functionalities, and work as an overlay to the current track circuit-based system.