Frauscher Sensor Technology has completed the divestiture to Wabtec Corporation.

Renewal signalling FAdC® and RSR123 | Denmark
Train DetectionDenmark

Renewal signalling FAdC® and RSR123

Operator
BaneDanemark
Country
Denmark
Partner
Alstom
Segment
Main & Regional Line
Application
Track Vacancy Detection
Products
FAdC®, RSR123
Protocols
Proprietary protocols
Year
2009
Scope of project
Approx. 2500 track sections, 3000 counting heads

Banedanmark, the Danish railway infrastructure owner, started replacing the existing signalling system in the Eastern region of Denmark in 2009 to implement the newest proven signalling technology, based on standard industrial hardware components and redundant system configurations. Uniform system interfaces should reduce signalling failures to provide a better reliability and punctuality of the entire network. For this project, Frauscher delivered the Frauscher Advanced Counter FAdC® and the Frauscher Wheel Sensor RSR123.

When replacing the existing signalling system in the Eastern region of Denmark with Alstom’s proven Atlas solution, Frauscher delivered both, the Frauscher Advanced Counter FAdC® and the Frauscher Wheel Sensor RSR123.

To ensure a complete and smooth integration of the Frauscher Advanced Counter into the design of the interlocking system, Alstom’s interface protocol FSFB2 has been implemented into the FAdC®. Due to this, all required information such as configuration files and design documentation can be generated automatically. This allows a significant reduction of the configuration and test outlay and increases the flexibility of further changes during the project without a considerable increase in additional costs.

Frauscher Diagnostic System FDS offers a software interface to allow a total integration of FAdC® diagnostics into operator’s overall diagnostic and maintenance system.

The use of the RSR123 increases the reliability in conditions of strong electromagnetic interferences. As no active electronic components are used on the trackside, the availability of this Frauscher wheel detection system is extremely high.

Reduction of life cycle costs

The preventative maintenance, optimisation of fault rectification, unrestricted online access to the axle counting system data and the minimisation of maintenance work led to a reduction in life cycle costs.

Reduction of configuration outlay

A complete integration of the Frauscher Advanced Counter FAdC® allows an automatic generation of configuration files and design documents to reduce the configuration and test outlay.

Less calibration errors

The automatic calibration process, which can be triggered remotely makes sure the user spends as little time as possible on the track and helps avoiding calibration errors.

Similar Projects
This might also interest you
1/5
Train DetectionChina

CBTC Fallback System on Beijing Metro Lines

Beijing metro, one of the busiest lines in the world, was Frauscher’s very first assignment when entering the Chinese market. Due to its utilised capacity, it requires a great level of stability, reliability and performance of the entire signalling system. The Communication Based Train Control System (CBTC) applied here relies on a backup system consisting of fixed automatic train detection systems. Axle counting systems from Frauscher are perfectly suited for the accurate operation of such stand-by systems.
Train DetectionIndia

Ensuring reliable rail operations across India´s longest rail-road bridge

The Bogibeel Bridge is India’s longest rail-road bridge that connects Assam and Arunachal Pradesh, carrying both rail and road traffic across the Brahmaputra River. Harsh environmental conditions and structural constraints made conventional signalling unworkable. The Frauscher Advanced Counter FAdC® axle counting system was selected for its proven reliability and low maintenance under these challenging conditions.
Train DetectionUnited Kingdom of Great Britain and Northern Ireland

The Borders Railway Project

From Shawfair to Tweedbank, the Borders Railway rail route underwent significant renovations after 45 years of disconnect due to Beeching cuts. Our Frauscher UK & Ireland team were involved in providing innovative solutions for train detection for a section of the Borders Railway route.
Train DetectionUnited Kingdom of Great Britain and Northern Ireland

Maintaining the past, creating the future

The Dean Forest Railway (DFR) operates a historical 7 km passenger service line running north from Lydney Junction to Parkend, in the Forest of Dean. Due to extensions of the line and an additional turnout being added at Parkend, an update and modernisation of the existing train detection and signalling system was necessary. Being a heritage railway, it requires high standards in terms of signalling and safety, whilst maintaining the historical touch of the line.
Train DetectionIndia

Western Dedicated Freight Corridor (Rewari – Makarpura)

The Western Dedicated Freight Corridor (WDFC) represents one of the most strategically significant freight transportation projects in India. By facilitating the seamless transport of goods between major economic hubs, the intention is that the WDFC will significantly boost economic growth and development in the local region and beyond, further underlying the importance of this project.