London to Corby | UK
train-detectionUnited Kingdom of Great Britain and Northern Ireland

London to Corby

Operator
Network Rail
Country
United Kingdom of Great Britain and Northern Ireland
Partner
Siemens Mobility Limited
Segment
Main & Regional Line
Application
Track Vacancy Detection
Products
RSR123, FAdC
Protocols
Proprietary protocols
Year
2020

The project was part of Network Rail’s Midland Main line electrification programme and involved re-signalling between Bedford and Kettering. The goal is the reduction of industry costs and environmental benefits through lighter rolling stock, reduced fuel costs and lower carbon emissions. Among others, the project included replacing existing Westpac and route relay interlockings with the Trackguard Westlock System as well as renewing the signalling equipment using the Trackguard Westrace Trackside System and Frauscher axle counters.

To replace the existing route relay interlocking with the Trackguard Westlock System, the Frauscher Advanced Counter FAdC with RSR123 was implemented as the track vacancy detection system. To establish an interface with the Trackguard Westlock System, the track sections are output via the WNC failsafe ethernet protocol. The London to Corby project was set up with an A and a B Network. This guaranteed network redundancy for enhanced availability.

Since the RSR123 and the Frauscher Advanced Counter FAdC do not require any trackside electronics, tail cables were connected to the signalling cable using Glenair plug couplers. Due to this, the amount of equipment trackside could be highly reduced. Trackside connection boxes were installed as installation and maintainer preference as well as plug couplers (i.e. head to Glenair plug coupler, coupler to dis box, dis-box to loc).

The RSR123 also complies with high standards in reliability and robustness which were required by the Network Rail Infrastructure.

Significant reduction of equipment

Tail cables could be directly connected to the signalling cable using plug couplers as no trackside electronics are needed when using the Frauscher technology. Furthermore, this led to a reduction of costs.

High standards in reliability

The RSR123 uses patented V.Mix Technology to ensure that it complies with high standards in reliability and robustness.

Similar Projects
This might also interest you
1/5
data-transmissionUnited Kingdom of Great Britain and Northern Ireland

Headbolt Lane to Rainford Project

As part of the project to expand Merseyrail services, the operator needed to address the challenge of transmitting indication information over a specific section, spanning from Headbolt Lane to Rainford. In this instance, Frauscher’s technology was utilised to fulfill the data transmission requirements of this project, avoiding expensive and time consuming cabling that would have otherwise been required.
train-detectionCanada

City of Calgary Grade Crossing Upgrade

The City of Calgary in Alberta, Canada was seeking an upgrade to the existing signaling system at a crossing near a station in the downtown area, to alleviate shunt issues caused by winter conditions. The Frauscher Advanced Counter FAdC and Wheel Sensors RSR180 were chosen to augment the existing system. During the eleven month trial period, the axle counter ran in shadow mode with the legacy system to gauge performance and compatibility. After the axle counter was proven during the trial with no faults or errors, the city was able to implement a hybrid crossing design using both the axle counting system and track circuits.
train-detectionChina

CBTC Fallback System on Beijing Metro Lines

Beijing metro, one of the busiest lines in the world, was Frauscher’s very first assignment when entering the Chinese market. Due to its utilised capacity, it requires a great level of stability, reliability and performance of the entire signalling system. The Communication Based Train Control System (CBTC) applied here relies on a backup system consisting of fixed automatic train detection systems. Axle counting systems from Frauscher are perfectly suited for the accurate operation of such stand-by systems.
train-detectionUnited States of America

Reducing Delays in a Metro (subway) Environment

A large metro operator was researching ways to reduce bottlenecks that were causing significant delays at a busy station. With two routes dividing in close proximity to the station and a complex auto-routing system that required the use of a 30-second timer to release switches, trains would frequently back up when approaching the station.
train-detectionChina

Fenghuang Maglev

Fenghuang Maglev is a medium-low speed maglev rapid transit line. Since maglev trains do not have wheels, traditional wheel-based detection systems cannot be directly applied to maglev traffic engineering.