Frauscher Sensor Technology has completed the divestiture to Wabtec Corporation.

Find Out More
Maintaining the past, creating the future | UK
Train DetectionUnited Kingdom of Great Britain and Northern Ireland

Maintaining the past, creating the future

Operator
Dean Forest Railway
Country
United Kingdom of Great Britain and Northern Ireland
Segment
Main & Regional Line
Application
Track Vacancy Detection
Products
RSR123, FAdC
Year
2019

The Dean Forest Railway (DFR) operates a historical 7 km passenger service line running north from Lydney Junction to Parkend, in the Forest of Dean. Due to extensions of the line and an additional turnout being added at Parkend, an update and modernisation of the existing train detection and signalling system was necessary. Being a heritage railway, it requires high standards in terms of signalling and safety, whilst maintaining the historical touch of the line.

The train detection system had to be integrated into the mechanical interlocking that was also being restored to bring Parkend signal box back to life. Achieving the necessary ballast resistance to reliably operate track circuits would have involved relaying a large portion of track. Together with the maintenance requirements of additional track circuits, this would have been too time-consuming, as the line is operated by a volunteer workforce. Alternatively, extending the original token system would have reduced the number of income-generating services. Thus, a different method of track vacancy detection was necessary.

Based on previous positive experiences, DFR decided to go for an axle counter solution from Frauscher. To provide maximum flexibility and meet the variety of requirements defined, the Frauscher Advanced Counter FAdC was chosen. On track, nine Frauscher Wheel Sensors RSR123 are now detecting even the old steam train’s wheel flanges highly reliably. Using the system’s ability of establishing individual architectures, the axle counter was collocated with the interlocking inside the existing signal box. Track vacancy detection data is provided to be electronically integrated into the mechanical interlocking. Additionally, Supervisor Track Sections STS and Counting Head Control CHC are providing maximum availability and system resilience. The Frauscher Diagnostic System FDS provides DFR’s experts with remote access to real-time diagnostic data.

Quick installation

With the assistance of the Frauscher UK employees, installing and commissioning the FAdC and Wheel Sensors RSR123 took only six days, including laying the cable. This resulted in a minimum downtime on site.

Reduction of ongoing maintenance costs

The possibility of remote diagnostics ensures that a time related benefit is given during operation as well, as it can help off duty staff members to support their colleagues onsite and reduce ongoing maintenance costs. Data configuration and consistency of spare parts, allows for future remodelling and expansion work.

Similar Projects
This might also interest you
1/5
Train DetectionAustria

GKB Graz-Köflacher Bahn

The operator of the Graz-Köflacher Bahn has made substantial modernisations to the network, choosing a decentralised system architecture and the EULYNX standardised interface. In this case, it was crucial that the new system would ensure a seamless transition from the previous parallel interface for relay systems to EULYNX.
Train Detection, ServicesIndia

Sini - Chandil Railway Line

The Sini-Chandil railway line is a crucial rail connection located in the state of Jharkhand, which lies in the eastern coastal region of India. This railway line holds significant strategic importance for the entire region, and now incorporates Frauscher solutions, including the Frauscher Advanced Counter FAdC, Wheel Sensor RSR180 and the Frauscher Insights applications Diagnostics and Motion.
Train DetectionUnited States of America

MTA Baltimore North Avenue Yard

In this project, reliable and precise train detection was needed to automate the yard and significantly increase efficiency and safety. To meet these requirements, the Frauscher Advanced Counter FAdCi and Wheel Sensors RSR180 were selected for this automation project.
Train DetectionChina

Fenghuang Maglev

Fenghuang Maglev is a medium-low speed maglev rapid transit line. Since maglev trains do not have wheels, traditional wheel-based detection systems cannot be directly applied to maglev traffic engineering.
Train DetectionCanada

City of Calgary Grade Crossing Upgrade

The City of Calgary in Alberta, Canada was seeking an upgrade to the existing signaling system at a crossing near a station in the downtown area, to alleviate shunt issues caused by winter conditions. The Frauscher Advanced Counter FAdC and Wheel Sensors RSR180 were chosen to augment the existing system. During the eleven month trial period, the axle counter ran in shadow mode with the legacy system to gauge performance and compatibility. After the axle counter was proven during the trial with no faults or errors, the city was able to implement a hybrid crossing design using both the axle counting system and track circuits.