Jhansi - Bina Railway Line | India
train-detectionIndia

Jhansi - Bina Railway Line | India

Operator
Indian Railways – North Central Railway
Country
India
Segment
Main & Regional Line
Application
Track Vacancy Detection
Products
FAdC®, RSR180
Year
2017
Scope of project
221 counting heads, 148 track sections

The Jhansi-Bina railway line is a strategically important line which belongs to North Central Railway and is in Uttar Pradesh. Initially, the line featured analogue axle counters for detecting trains in individual track sections as well as a DC track circuit train detection system in less congested areas.

Eventually, there was a requirement to get them replaced with the Frauscher Advanced Counter FAdC®. This project is one of Frauscher’s iconic Indian Railway projects, featuring 221 counting heads and 148 track sections.

In this project, the FAdC® indoor electronics were placed in 19 stations and 15 block huts, and all 34 are connected over an Ethernet based redundant network, in a distributed architecture.

The wheel sensors were mounted onto the rail with the patented Frauscher Rail Claw which makes the installation process easy and convenient, since no drilling is required. In turn, this preserves the structural integrity of the rail, saves costs, and reduces the dwell time on track for the installation engineers. Additionally, the distributed architecture used in this project minimises setup costs and enhances scalability in an efficient and cost-effective way.

Increasing Availability

COM redundancy, PSC redundancy & network redundancy with bus architecture for very high availability.

Easy and Cost effective Integration

Greater cost saving due to distributed architecture and lower maintenance requirement.

Similar Projects
This might also interest you
1/5
train-detection, servicesIndia

Sini - Chandil Railway Line | India

The Sini-Chandil railway line is a crucial rail connection located in the state of Jharkhand, which lies in the eastern coastal region of India. This railway line holds significant strategic importance for the entire region, and now incorporates Frauscher solutions, including the Frauscher Advanced Counter FAdC®, Wheel Sensor RSR180 and the Frauscher Insights applications Diagnostics and Motion.
train-detectionDenmark

Renewal signalling FAdC® and RSR123 | Denmark

Banedanmark, the Danish railway infrastructure owner, started replacing the existing signalling system in the Eastern region of Denmark in 2009 to implement the newest proven signalling technology, based on standard industrial hardware components and redundant system configurations. Uniform system interfaces should reduce signalling failures to provide a better reliability and punctuality of the entire network. For this project, Frauscher delivered the Frauscher Advanced Counter FAdC® and the Frauscher Wheel Sensor RSR123.
train-detectionSpain

Three-rail Castellbisbal | Spain

The dual-gauge system of the Spanish railway network is quite challenging in terms of track vacancy detection: Wheel sensors must be installed on two rails next to each other in tight spaces and have to detect axles reliably on the respective rail. Frauscher developed a solution which copes also with the complexity of different interlocking technology in the stations along the line.
train-detectionUnited Kingdom of Great Britain and Northern Ireland

Axle Counter Overlay System | UK

Between London St Pancras International Station and Farringdon Station, there is a history of frequent flooding through the tunnels that adversely affected the reliability of the existing train detection system. Due to this, the installation was non-operational during large periods. However, being a mainline section and a core route through London, high reciliation to any sort of failures is vital.
train-detectionUnited States of America

Reducing Delays in a Metro (subway) Environment | USA

A large metro operator was researching ways to reduce bottlenecks that were causing significant delays at a busy station. With two routes dividing in close proximity to the station and a complex auto-routing system that required the use of a 30-second timer to release switches, trains would frequently back up when approaching the station.