Class 1 Grade Crossing Enhancement FAdC and RSR180 | USA
train-detectionUnited States of America

Class 1 Grade Crossing Enhancement FAdC and RSR180 | USA

Country
United States of America
Segment
Freight Line
Application
Level Crossing Protection
Products
RSR180, FAdC
Year
2020
Scope of project
4 wheel sensors

Frauscher was approached by a US Class 1 railroad regarding a grade crossing owned and operated by them, on a track crossing a public road. The operator’s main goal was to find a signaling solution that would seamlessly integrate with the current crossing controller and keep the crossing operational under challenging operational conditions. The Frauscher Advanced Counter FAdC and Wheel Sensor RSR180 were chosen as the ideal solution for this particular project.

The high degree of compatibility with crossing controllers gives Frauscher's axle counting solutions the ability to upgrade the performance of grade crossings, as demonstrated in this Class 1 project. The Frauscher Advanced Counter FAdC and Wheel Sensors RSR180 addressed persistent issues at a crossing prone to flooding and poor track conditions, causing shunt issues for the existing signaling system. Installed as an overlay to the current signaling system and operating in shadow mode during the trial, the solution delivered a flawless 12 month performance, confirming its reliability under adverse environmental conditions.

Key benefits of the Frauscher system include its high reliability and resilience in challenging weather and track conditions, significantly improving the uptime and availability of grade crossings. Advanced features of the FAdC, including Supervisor Track Section (STS), enhance the availability of the system by bypassing potential external interferences without compromising safety or system integrity. The STS system was not activated during the trial, since the axle counting system operated without a single fault throughout the 12 month trial.

The system's modular design simplifies integration with existing crossing controllers, offering flexible input/output connections to adapt to diverse requirements. Its ability to function independently or as an overlay to traditional track circuits ensures uninterrupted operation, even during failures in the existing system.

Furthermore, Frauscher wheel sensors can be installed in minutes without drilling using the patented Frauscher rail claw, which reduces installation time and labor costs. Additionally, the system features the Frauscher Diagnostic System FDS, a diagnostic interface for real-time monitoring and troubleshooting.

The trial's success highlights this Frauscher solution as a reliable and easy-to-implement fix for various grade crossings. Traffic flow and safety are improved, particularly in areas susceptible to harsh environmental conditions.

Reliable Performance in Adverse Conditions

Frauscher's axle counting systems operate reliably in challenging operational conditions, ensuring uninterrupted operation and increased uptime for grade crossings.

Seamless Integration with Existing Systems

The solution can be used to overlay or complement traditional track circuits, enabling seamless integration with existing systems.

Efficient Installation and Maintenance

Frauscher's rail claws enable fast installation without drilling, while the Frauscher Diagnostic System FDS allows real-time monitoring and troubleshooting to support ongoing maintenance efforts.

Similar Projects
This might also interest you
1/5
train-detectionUnited Kingdom of Great Britain and Northern Ireland

Wherry Lines | UK

The Wherry Lines are railway branch lines in East Anglia in the East of England, linking Norwich – Great Yarmouth – Lowestoft. The project aimed to integrate Frauscher Advanced Counter FAdC into two external systems to mitigate against a train passing a red signal without authority on approach to level crossings.
train-detectionUnited States of America

Charlotte Area Transit System (CATS) Supplementing Audio Frequency Track Circuits with Axle Counters | USA

At the Charlotte Area Transit System, frequent false red signal overruns resulted when electromagnetic interference caused “bobbing” of the line’s audio frequency track circuits. The Frauscher Advanced Counter FAdC was subsequently considered as an alternative to these track circuits to eliminate the occurrence of false red signal overruns.
train-detectionUnited States of America

Tracking Trains in Houston | USA

Houston MetroRail (METRO for short) is comprised of three light-rail lines covering 22 miles. Two-car, low-floor trainsets are powered by overhead catenary and operated on a mix of rail types, including embedded, grooved, concrete, and ballasted track. Harsh weather conditions such as extreme heat, humidity, and storms with heavy rains causing floods are typical for Houston. Combined with the variable track structure this caused significant malfunctions of the wheel sensors of METRO’s signalling system.
train-detectionAustria

GKB Graz-Köflacher Bahn | Austria

The operator of the Graz-Köflacher Bahn has made substantial modernisations to the network, choosing a decentralised system architecture and the EULYNX standardised interface. In this case, it was crucial that the new system would ensure a seamless transition from the previous parallel interface for relay systems to EULYNX.
data-transmissionUnited Kingdom of Great Britain and Northern Ireland

Headbolt Lane to Rainford Project | United Kingdom

As part of the project to expand Merseyrail services, the operator needed to address the challenge of transmitting indication information over a specific section, spanning from Headbolt Lane to Rainford. In this instance, Frauscher’s technology was utilised to fulfill the data transmission requirements of this project, avoiding expensive and time consuming cabling that would have otherwise been required.