Wherry Lines | UK
Train DetectionUnited Kingdom of Great Britain and Northern Ireland

Wherry Lines

Operator
Network Rail
Country
United Kingdom of Great Britain and Northern Ireland
Partner
Atkins
Segment
Main & Regional Line
Application
Track Vacancy Detection
Products
RSR123, FAdC
Protocols
Proprietary protocols
Year
2020

The Wherry Lines are railway branch lines in East Anglia in the East of England, linking Norwich – Great Yarmouth – Lowestoft. The project aimed to integrate Frauscher Advanced Counter FAdC into two external systems to mitigate against a train passing a red signal without authority on approach to level crossings. Both systems were required to be a SIL 1 level and have the ability to communicate with an ElectrologIXS Interlocking.

For the Wherry Line project, two systems were implemented to mitigate against a train passing a red signal without authority on approach to level crossings. The first system being a method of predicting the likelihood of a train passing a signal based on its speed, the second being a Fast Acting SPAD Trigger (FAST) in the event that a train does traverse past a signal showing a red aspect.

The customer preferred to use the Frauscher equipment that was already installed on site for another project, consisting of the Frauscher Advanced Counter FAdC and Wheel Sensor RSR123. This decision was made in favour of reducing lineside equipment while also reducing maintenance costs for the future.

As no data of previous speed measurement accuracy was available, Frauscher facilitated and undertook tests to determine the accuracy of the speed measurement at the speeds requested by the customer. Additionally, a formal SIL assessment was successfully undertaken by Atkins to achieve the required SIL 1 level for the system.

Lower maintenance costs

By using existing trackside equipment, no further installations were needed which reduces the required effort and costs for future maintenance.

Easy integration

The FAdC proved its flexibility and versatility as an optimal solution for this project: It offers the ability to communicate with the customer’s protocol and can be easily integrated into existing systems.

Similar Projects
This might also interest you
1/5
Train DetectionUnited Kingdom of Great Britain and Northern Ireland

Axle Counter Overlay System

Between London St Pancras International Station and Farringdon Station, there is a history of frequent flooding through the tunnels that adversely affected the reliability of the existing train detection system. Due to this, the installation was non-operational during large periods. However, being a mainline section and a core route through London, high reciliation to any sort of failures is vital.
Train DetectionUnited States of America

Class 1 Yard Project

Frauscher was approached by a North American Class 1 railroad planning a major expansion of one of its yards, and the required time to completion was short. The scope of the expansion was to build an operational multitrack flat yard on vacant land within six weeks with a signalling solution to protect switches during operations.
Train DetectionTaiwan

Shalun Signaling

The Shalun Line is frequented by four-car-trains and located in the south of Taiwan. Tropical conditions with temperatures between 22 and 28 degrees and high humidity are not the only challenge the Frauscher Axle Counter Solution has to deal with.
Train DetectionChina

Chengdu Tram Line 2

Chengdu Tram Line, located in the capital Chengdu City of Sichuan Province, is the first tram line to be operational in the city since 2018.
Train DetectionCanada

City of Calgary Grade Crossing Upgrade

The City of Calgary in Alberta, Canada was seeking an upgrade to the existing signaling system at a crossing near a station in the downtown area, to alleviate shunt issues caused by winter conditions. The Frauscher Advanced Counter FAdC and Wheel Sensors RSR180 were chosen to augment the existing system. During the eleven month trial period, the axle counter ran in shadow mode with the legacy system to gauge performance and compatibility. After the axle counter was proven during the trial with no faults or errors, the city was able to implement a hybrid crossing design using both the axle counting system and track circuits.