Wherry Lines | UK
train-detectionUnited Kingdom of Great Britain and Northern Ireland

Wherry Lines | UK

Operator
Network Rail
Country
United Kingdom of Great Britain and Northern Ireland
Partner
Atkins
Segment
Main & Regional Line
Application
Track Vacancy Detection
Products
RSR123, FAdC
Protocols
Proprietary protocols
Year
2020

The Wherry Lines are railway branch lines in East Anglia in the East of England, linking Norwich – Great Yarmouth – Lowestoft. The project aimed to integrate Frauscher Advanced Counter FAdC into two external systems to mitigate against a train passing a red signal without authority on approach to level crossings. Both systems were required to be a SIL 1 level and have the ability to communicate with an ElectrologIXS Interlocking.

For the Wherry Line project, two systems were implemented to mitigate against a train passing a red signal without authority on approach to level crossings. The first system being a method of predicting the likelihood of a train passing a signal based on its speed, the second being a Fast Acting SPAD Trigger (FAST) in the event that a train does traverse past a signal showing a red aspect.

The customer preferred to use the Frauscher equipment that was already installed on site for another project, consisting of the Frauscher Advanced Counter FAdC and Wheel Sensor RSR123. This decision was made in favour of reducing lineside equipment while also reducing maintenance costs for the future.

As no data of previous speed measurement accuracy was available, Frauscher facilitated and undertook tests to determine the accuracy of the speed measurement at the speeds requested by the customer. Additionally, a formal SIL assessment was successfully undertaken by Atkins to achieve the required SIL 1 level for the system.

Lower maintenance costs

By using existing trackside equipment, no further installations were needed which reduces the required effort and costs for future maintenance.

Easy integration

The FAdC proved its flexibility and versatility as an optimal solution for this project: It offers the ability to communicate with the customer’s protocol and can be easily integrated into existing systems.

Similar Projects
This might also interest you
1/5
train-detectionIndia

Increasing Availability at Adra Yard | India

Adra Yard belongs to the Southeastern Railway Zone of Indian Railways and is in West Bengal. Initially the yard was equipped with track circuits and there was a requirement to get them replaced with the Frauscher Advanced Counter FAdC. This project is one of Frauscher’s esteemed Indian Railway Projects with a coverage of 139 counting heads and 97 track sections.
data-transmissionIndia

South Central Railway | India

The Vijayawada Division of Indian Railways introduced a new train detection system with data transmission functionality to overcome the challenges of the existing BPAC and conventional quad cable-based systems. Frauscher implemented the Frauscher Advanced Counter FAdC, featuring full redundancy, advanced reset mechanisms and remote diagnostics. This upgrade delivers significant cost savings and enhanced system availability for the operator.
train-detectionUnited States of America

MTA Baltimore North Avenue Yard | USA

In this project, reliable and precise train detection was needed to automate the yard and significantly increase efficiency and safety. To meet these requirements, the Frauscher Advanced Counter FAdCi and Wheel Sensors RSR180 were selected for this automation project.
train-detectionUnited Kingdom of Great Britain and Northern Ireland

The Borders Railway Project | United Kingdom

From Shawfair to Tweedbank, the Borders Railway rail route underwent significant renovations after 45 years of disconnect due to Beeching cuts. Our Frauscher UK & Ireland team were involved in providing innovative solutions for train detection for a section of the Borders Railway route.
train-detectionCanada

City of Calgary Grade Crossing Upgrade | Canada

The City of Calgary in Alberta, Canada was seeking an upgrade to the existing signaling system at a crossing near a station in the downtown area, to alleviate shunt issues caused by winter conditions. The Frauscher Advanced Counter FAdC and Wheel Sensors RSR180 were chosen to augment the existing system. During the eleven month trial period, the axle counter ran in shadow mode with the legacy system to gauge performance and compatibility. After the axle counter was proven during the trial with no faults or errors, the city was able to implement a hybrid crossing design using both the axle counting system and track circuits.