Vijayawada – Gannavaram Rail Line | India
Train DetectionIndia

Vijayawada – Gannavaram Rail Line

Operator
Indian Railways - South Central Railway
Country
India
Partner
Progressive Engineering Enterprises
Segment
Main & Regional Line
Application
Track Vacancy Detection
Products
RSR180, FAdC
Year
2017
Scope of project
88 counting heads, 44 track sections

The Vijayawada – Gannavaram rail line belongs to South Central Railway and is situated in Andhra Pradesh. Initially, the line featured a conventional signalling system and there was a requirement by the operator to update this into an automatic signalling system with the Frauscher Advanced Counter FAdC. The project consists of 88 counting heads and 44 track sections and the type of architecture used in this project is a dual redundant distributed architecture with an Ethernet based communication for the automatic signalling system.

To fulfill the requirements of the operator, the Frauscher Wheel Sensor RSR180 along with the FAdC and its highly configurable system architecture were used in this project. Additionally, the Supervisor Track Section STS function has also been implemented on this line for the purposes of auto resetting in case of false errors, again leading to greater system availability and reduced downtime.

The conversion from a conventional signalling system into an automatic signalling system for detecting trains has offered a wide array of benefits for the operator. Power consumption for every detection point is very low for the FAdC which leads to cost saving for operators throughout the lifecycle of the system. Furthermore, deploying the FAdC has enhanced the line capacity of the railway system and led to a reduction in the waiting time of trains for track vacancy clearance.

Increasing Availability

The FAdC provides a dual detection system alongside COM, PSC and network redundancy which further enhances the availability of the system in the automatic block sections.

Greater Operational Efficiency

The automatic block section with FAdC has been designed in a way that enables trains which travel in the same direction to follow each other in a safe manner, thus enhancing the line capacity of the railway system.

Similar Projects
This might also interest you
1/5
Train DetectionChina

CBTC Fallback System on Beijing Metro Lines

Beijing metro, one of the busiest lines in the world, was Frauscher’s very first assignment when entering the Chinese market. Due to its utilised capacity, it requires a great level of stability, reliability and performance of the entire signalling system. The Communication Based Train Control System (CBTC) applied here relies on a backup system consisting of fixed automatic train detection systems. Axle counting systems from Frauscher are perfectly suited for the accurate operation of such stand-by systems.
Train DetectionFrance

Axle counting adds fail-safe control to laser diagnostics

When MERMEC set out to install a laser-based Wheel Profile Measurement System in close proximity to the Eurotunnel, they faced a critical challenge: how to avoid unintended laser exposure without compromising the system’s ability to inspect up to 200 trains per day. To meet these requirements, MERMEC partnered with Frauscher.
Train DetectionUnited States of America

Charlotte Area Transit System (CATS) Supplementing Audio Frequency Track Circuits with Axle Counters

At the Charlotte Area Transit System, frequent false red signal overruns resulted when electromagnetic interference caused “bobbing” of the line’s audio frequency track circuits. The Frauscher Advanced Counter FAdC was subsequently considered as an alternative to these track circuits to eliminate the occurrence of false red signal overruns.
Train DetectionUnited States of America

MTA Baltimore North Avenue Yard

In this project, reliable and precise train detection was needed to automate the yard and significantly increase efficiency and safety. To meet these requirements, the Frauscher Advanced Counter FAdCi and Wheel Sensors RSR180 were selected for this automation project.
Train DetectionUnited States of America

Reducing Delays in a Metro (subway) Environment

A large metro operator was researching ways to reduce bottlenecks that were causing significant delays at a busy station. With two routes dividing in close proximity to the station and a complex auto-routing system that required the use of a 30-second timer to release switches, trains would frequently back up when approaching the station.