Dillinger Hütte | Germany
Train DetectionGermany

Dillinger Hütte

Operator
AG der Dillinger Hüttenwerke
Country
Germany
Partner
Hanning & Kahl GmbH
Segment
Industrial & Mining
Application
Track Vacancy Detection
Products
RSR180, FAdCi
Year
2012
Scope of project
34 counting heads

A new ladder track was required to provide more parking tracks in the steel plant. At the same time, the layout of the dead end tracks were optimised and the efficiency of the whole depot improved by installing the Frauscher Advanced Counter FAdCi® in combination with the wheel sensor RSR180. With the implementation of the Frauscher Diagnostic System FDS, the overall maintenance costs can be significantly reduced.

Hanning & Kahl implemented 16 power operated, locally controlled points (EOW). A SIL3 proven control ensures safe, flexible and efficient operation. The Frauscher Axle Counter FAdCi® in combination with the wheel sensor RSR180 guarantees reliable train detection, while Frauscher Diagnostic System FDS provides diagnostic data to the higher level control system.

Thanks to the FDS which allows collection of data all over the system, the maintenance staff is now provided with diagnostic tools and a virtual track representation of the entire depot area. Irregularities and failures can be detected in advance before coming to expensive breakdowns. With the condition-based maintenance replacing scheduled maintenance, the overall cost can be significantly reduced.

Functional modularity

The FAdC provides reset options, counting head information, counting head control functionality and comprehensive diagnostic facilities.

Optimise maintenance

Analysis of diagnostic data provided by FDS allows condition-based maintenance and preventive measures.

Similar Projects
This might also interest you
1/5
Train DetectionIndia

Ensuring reliable rail operations across India´s longest railroad bridge

The Bogibeel Bridge is India’s longest railroad bridge that connects Assam and Arunachal Pradesh, carrying both rail and road traffic across the Brahmaputra River. Harsh environmental conditions and structural constraints made conventional signaling impractical. The Frauscher Advanced Counter FAdC axle counting system was selected for its proven reliability and low maintenance requirements, even in challenging conditions.
Train DetectionFrance

Axle counting adds fail-safe control to laser diagnostics

When MERMEC set out to install a laser-based Wheel Profile Measurement System in close proximity to the Eurotunnel, they faced a critical challenge: how to avoid unintended laser exposure without compromising the system’s ability to inspect up to 200 trains per day. To meet these requirements, MERMEC partnered with Frauscher.
Train DetectionUnited States of America

Class 1 Grade Crossing Enhancement FAdC and RSR180

Frauscher was approached by a US Class 1 railroad regarding a grade crossing owned and operated by them, on a track crossing a public road. The operator’s main goal was to find a signaling solution that would seamlessly integrate with the current crossing controller and keep the crossing operational under challenging operational conditions. The Frauscher Advanced Counter FAdC and Wheel Sensor RSR180 were chosen as the ideal solution for this particular project.
Train DetectionUnited States of America

MTA Baltimore North Avenue Yard

In this project, reliable and precise train detection was needed to automate the yard and significantly increase efficiency and safety. To meet these requirements, the Frauscher Advanced Counter FAdCi and Wheel Sensors RSR180 were selected for this automation project.
Train DetectionCanada

City of Calgary Grade Crossing Upgrade

The City of Calgary in Alberta, Canada was seeking an upgrade to the existing signaling system at a crossing near a station in the downtown area, to alleviate shunt issues caused by winter conditions. The Frauscher Advanced Counter FAdC and Wheel Sensors RSR180 were chosen to augment the existing system. During the eleven month trial period, the axle counter ran in shadow mode with the legacy system to gauge performance and compatibility. After the axle counter was proven during the trial with no faults or errors, the city was able to implement a hybrid crossing design using both the axle counting system and track circuits.