Three-rail Castellbisbal | Spain
Train DetectionSpain

Three-rail Castellbisbal

Operator
Administrador de Infraestructuras Ferroviarias (ADIF)
Country
Spain
Partner
UTE Cormed (Joint Venture Siemens – Bombardier)
Segment
Main & Regional Line
Application
Track Vacancy Detection
Products
RSR123, FAdC
Protocols
Frauscher Safe Ethernet FSE
Year
2020
Scope of project
920 detection points; 19 stations

The dual-gauge system of the Spanish railway network is quite challenging in terms of track vacancy detection: Wheel sensors must be installed on two rails next to each other in tight spaces and have to detect axles reliably on the respective rail. Frauscher developed a solution which copes also with the complexity of different interlocking technology in the stations along the line.

The Spanish railway network is characterised by traditional Iberian and standard UIC gauges. On dual-gauge sections, which are becoming more frequent, track vacancy detection can be quite challenging as wheel sensors must be installed on two rails next to each other in tight spaces and detect axles reliably on the respective rail.

However, Frauscher developed a three-rail solution for the dual-gauge section between Castellbisal and Tarragona that fulfils all requirements stipulated by the Spanish railway infrastructure manager ADIF and successfully proves the seamless integration of its solutions with different interlocking technologies along the line.

This is made possible through the Frauscher Advanced Counter FAdC that provides the Frauscher Safe Ethernet FSE interface for Bombardier installations while for Siemens installations the customer-specific protocol WNC is used, proving its flexibility and versatility while complying with both customer-specific protocols and standard protocols like EULYNX. In addition to clear/occupied information from a section, it also states on which gauge the train is running.

The project started in March 2020 and comprises 920 detection points in 19 stations. Addressing the above challenges of limited spacing for mounting, Frauscher Wheel Sensors RSR123 and a specially developed type of the Frauscher rail claw SK150 are deployed.

Flexible and universally applicable interfaces

The FAdC proved its flexibility and versatility as an optimal solution for this project: Whilst for Siemens installations the customer-specific protocol WNC is used as interface, it provides the Frauscher Safe Ethernet FSE interface for the Bombardier installations.

Easy access to more data

The FAdC three-rail solution provides not only clear/occupied information of a track section, but also detects on which gauge the train is running.

Easy mounting and installation

Frauscher wheel sensors are mounted on the inner side of the rail only. With the RSR123 it is possible to mount two sensors on the neighbouring rails of both gauges and fully parallel in the same sleeper space.

Similar Projects
This might also interest you
1/5
Train DetectionChina

CBTC Fallback System on Beijing Metro Lines

Beijing metro, one of the busiest lines in the world, was Frauscher’s very first assignment when entering the Chinese market. Due to its utilised capacity, it requires a great level of stability, reliability and performance of the entire signalling system. The Communication Based Train Control System (CBTC) applied here relies on a backup system consisting of fixed automatic train detection systems. Axle counting systems from Frauscher are perfectly suited for the accurate operation of such stand-by systems.
ServicesAustria

Salzburger Lokalbahn

Frauscher supported the Salzburger Lokalbahn, a regional railway in Austria, with a service assignment that included both the maintenance of Frauscher wheel sensors and axle counters as well as hands-on training for the installation personnel. The customer benefited from efficient troubleshooting and tailored training delivered directly on their own equipment.
Train DetectionChina

Tram Huangpu Line 1

Tram Huangpu Line 1 (HP1) line is located in urban areas with high traffic density and passenger volume as well as many level crossings. The adverse weather conditions can cause flooding of the track bed and add to the challenges for reliable system availability and operations.
Train DetectionDenmark

Renewal signalling FAdC and RSR123

Banedanmark, the Danish railway infrastructure owner, started replacing the existing signalling system in the Eastern region of Denmark in 2009 to implement the newest proven signalling technology, based on standard industrial hardware components and redundant system configurations. Uniform system interfaces should reduce signalling failures to provide a better reliability and punctuality of the entire network. For this project, Frauscher delivered the Frauscher Advanced Counter FAdC and the Frauscher Wheel Sensor RSR123.
Train DetectionUnited Kingdom of Great Britain and Northern Ireland

Maintaining the past, creating the future

The Dean Forest Railway (DFR) operates a historical 7 km passenger service line running north from Lydney Junction to Parkend, in the Forest of Dean. Due to extensions of the line and an additional turnout being added at Parkend, an update and modernisation of the existing train detection and signalling system was necessary. Being a heritage railway, it requires high standards in terms of signalling and safety, whilst maintaining the historical touch of the line.