Axle Counter Overlay System | UK
train-detectionUnited Kingdom of Great Britain and Northern Ireland

Axle Counter Overlay System | UK

Operator
Network Rail
Country
United Kingdom of Great Britain and Northern Ireland
Partner
Siemens
Segment
Main & Regional Line
Application
Track Vacancy Detection
Products
RSR123, FAdC
Year
2019
Scope of project
45 counting heads, 4 FAdC location cases

Between London St Pancras International Station and Farringdon Station, there is a history of frequent flooding through the tunnels that adversely affected the reliability of the existing train detection system. Due to this, the installation was non-operational during large periods. However, being a mainline section and a core route through London, high reciliation to any sort of failures is vital.

In 2019, Network Rail started to look at how to improve the overall reliability of the railway without removing the existing detection system. The main requirement was guaranteeing maximum availability considering the local conditions without interfering with the existing installation.

Due to its great reliability under such circumstances the Frauscher Advanced Counter FAdC has been chosen as the most appropriate solution. The FAdC’s modular design allowed for the establishment of a decentralised architecture, where four external location cases were installed between the two stations to host the axle counter’s indoor equipment. The system is supported by the Frauscher Wheel Sensor RSR123, which precisely tracks every train axle. The sensor is extremely resilient to water penetration and other environmental and external influences. Thanks to the IP68 rated housing, it even works reliably in case of floods.

Excellent match of requirements

The FAdC units installed in location cases between the stations can communicate with one another via a vital Ethernet interface and also with the higher-ranking system using relay outputs. With overlay systems, the new track sections had to match the existing track section limits. Therefore, the system had a specific requirement to install the RSR123 within 0.5 m of the existing train detection system and within proximity of the neutral section to avoid any impact on the signalling controls.

Great resilience

The RSR123 is highly resilient against any interference or environmental influences.

Similar Projects
This might also interest you
1/5
train-detectionUnited Kingdom of Great Britain and Northern Ireland

Maintaining the past, creating the future | UK

The Dean Forest Railway (DFR) operates a historical 7 km passenger service line running north from Lydney Junction to Parkend, in the Forest of Dean. Due to extensions of the line and an additional turnout being added at Parkend, an update and modernisation of the existing train detection and signalling system was necessary. Being a heritage railway, it requires high standards in terms of signalling and safety, whilst maintaining the historical touch of the line.
train-detectionChina

CBTC Fallback System on Beijing Metro Lines | China

Beijing metro, one of the busiest lines in the world, was Frauscher’s very first assignment when entering the Chinese market. Due to its utilised capacity, it requires a great level of stability, reliability and performance of the entire signalling system. The Communication Based Train Control System (CBTC) applied here relies on a backup system consisting of fixed automatic train detection systems. Axle counting systems from Frauscher are perfectly suited for the accurate operation of such stand-by systems.
train-detectionUnited Kingdom of Great Britain and Northern Ireland

Wherry Lines | UK

The Wherry Lines are railway branch lines in East Anglia in the East of England, linking Norwich – Great Yarmouth – Lowestoft. The project aimed to integrate Frauscher Advanced Counter FAdC into two external systems to mitigate against a train passing a red signal without authority on approach to level crossings.
train-detectionSerbia

Hungary-Serbia Railway Project | Serbia

The Hungary-Serbia Railway Project is an iconic project of the “One Belt One Road” Initiative between China and CEE countries. Frauscher provides not only high-quality solutions but also detailed technical support and clarification.
data-transmissionUnited Kingdom of Great Britain and Northern Ireland

Headbolt Lane to Rainford Project | United Kingdom

As part of the project to expand Merseyrail services, the operator needed to address the challenge of transmitting indication information over a specific section, spanning from Headbolt Lane to Rainford. In this instance, Frauscher’s technology was utilised to fulfill the data transmission requirements of this project, avoiding expensive and time consuming cabling that would have otherwise been required.