Reducing Delays in a Metro (subway) Environment | USA
Train DetectionUnited States of America

Reducing Delays in a Metro (subway) Environment

Country
United States of America
Segment
Urban
Application
Triggering of Systems
Products
RSR180, FAdC
Year
2022
Scope of project
3 counting heads

A large metro operator was researching ways to reduce bottlenecks that were causing significant delays at a busy station. With two routes dividing in close proximity to the station and a complex auto-routing system that required the use of a 30-second timer to release switches, trains would frequently back up when approaching the station.

The primary goal for any busy Metro line is to move passengers safely and efficiently. When consistent and unnecessary delays interfere with such goals, operators eventually look for improvements. In this instance, consultants were tasked with finding a solution, focusing on the legacy signaling system that was unable to offer relief from the bottlenecks.

The main issue leading to delays involved the switch located directly after the station platform being locked in its position for 30 seconds when the approach is occupied. Stopped trains that require the switch to be thrown in reverse position would have to wait for a 30 second ASR (Approach Stick Relay) timer to expire.

In conjunction with the operator, Frauscher was able to design a simple wheel detection solution that positively verifies when a train is berthed at the station platform, allowing a bypass of the 30 second timer. The berthing is verified within 5 seconds, allowing unnecessary dwell time to be saved each time a train takes a route requiring the switch to be thrown. The operator reported dwell time reductions of 40 minutes per day since the system has been in service.

Improved Controls

More granular detection of berthed trains; vital and fail-safe system

Reduction in delays

Allows for quicker response times at timing circuits, providing relief at bottleneck areas and a daily savings of approximately 40 minutes dwell time per day

Ease of Integration

The flexibility of the Frauscher system allowed for a seamless integration with the existing relay-based signal system

Similar Projects
This might also interest you
1/5
Train DetectionChina

Chengdu Tram Line 2

Chengdu Tram Line, located in the capital Chengdu City of Sichuan Province, is the first tram line to be operational in the city since 2018.
Train DetectionUnited States of America

Class 1 Grade Crossing Enhancement FAdC and RSR180

Frauscher was approached by a US Class 1 railroad regarding a grade crossing owned and operated by them, on a track crossing a public road. The operator’s main goal was to find a signaling solution that would seamlessly integrate with the current crossing controller and keep the crossing operational under challenging operational conditions. The Frauscher Advanced Counter FAdC and Wheel Sensor RSR180 were chosen as the ideal solution for this particular project.
Train DetectionIndia

Increasing Availability at Adra Yard

Adra Yard belongs to the Southeastern Railway Zone of Indian Railways and is in West Bengal. Initially the yard was equipped with track circuits and there was a requirement to get them replaced with the Frauscher Advanced Counter FAdC. This project is one of Frauscher’s esteemed Indian Railway Projects with a coverage of 139 counting heads and 97 track sections.
Train DetectionFrance

Axle counting adds fail-safe control to laser diagnostics

When MERMEC set out to install a laser-based Wheel Profile Measurement System in close proximity to the Eurotunnel, they faced a critical challenge: how to avoid unintended laser exposure without compromising the system’s ability to inspect up to 200 trains per day. To meet these requirements, MERMEC partnered with Frauscher.
Train DetectionSpain

Three-rail Castellbisbal

The dual-gauge system of the Spanish railway network is quite challenging in terms of track vacancy detection: Wheel sensors must be installed on two rails next to each other in tight spaces and have to detect axles reliably on the respective rail. Frauscher developed a solution which copes also with the complexity of different interlocking technology in the stations along the line.