Frauscher Sensor Technology has completed the divestiture to Wabtec Corporation.

Find Out More
Class 1 Yard Project | USA
Train DetectionUnited States of America

Class 1 Yard Project

Country
United States of America
Segment
Freight Line
Application
Switch Point Protection
Products
FAdC, RSR180
Year
2018
Scope of project
76 wheel sensors

Frauscher was approached by a North American Class 1 railroad planning a major expansion of one of its yards, and the required time to completion was short. The scope of the expansion was to build an operational multitrack flat yard on vacant land within six weeks with a signalling solution to protect switches during operations.

Frauscher supported a North American Class 1 Railroad in a multitrack flat yard expansion, delivering a comprehensive solution within six weeks. The project demanded seamless integration with the GE ElectroLoglXS interlocking, as well as robust performance in challenging winter conditions, and quick installation to meet the tight timeline. 

Frauscher’s Advanced Counter FAdC played a central role in this project, interfacing with the GE ElectroLoglXS system via the RP2009 protocol. Additionally, seventy-six Frauscher Wheel Sensors RSR180 were deployed across the yard, requiring approximately five minutes each to install using the patented Frauscher rail claw. The RSR180 is ideal for use in constrained spaces and can be easily relocated or adjusted as needed. Its robust design provides a high level of availability and reliability even in extreme temperatures, snow and ice as well as deteriorated track and ballast conditions common in yard environments.

Despite the rough conditions, the operator experienced a smooth installation of the system with the ability to remotely calibrate the sensors, minimising on-track manual work. Furthermore, Frauscher engineers trained railroad staff on-site, providing them with the necessary skills to independently manage the system, reducing future downtime and costs. The Frauscher Diagnostic System (FDS) was implemented to provide real-time health data, historical performance analysis, and streamlined troubleshooting via an intuitive GUI interface. This capability enhances maintenance efficiency and ensures long-term system reliability. 

Frauscher was able to complete the project ahead of schedule, delivering a resilient, reliable and flexible switch point protection system capable of withstanding harsh Canadian winters.

Quick Installation and Flexibility

Frauscher’s Wheel Sensors RSR180 were installed quickly and efficiently using the Frauscher rail claw.

Seamless Integration with Existing Systems

The FAdC’s compatibility with the GE ElectroLoglXS interlocking via the RP2009 protocol ensures efficient and fail-safe communication.

Advanced Diagnostics for Maintenance

The Frauscher Diagnostic System (FDS) provides real-time system health data and historical performance analysis, contributing to smoother and safer operations.

Similar Projects
This might also interest you
1/5
Train Detection, ServicesIndia

Sini - Chandil Railway Line

The Sini-Chandil railway line is a crucial rail connection located in the state of Jharkhand, which lies in the eastern coastal region of India. This railway line holds significant strategic importance for the entire region, and now incorporates Frauscher solutions, including the Frauscher Advanced Counter FAdC, Wheel Sensor RSR180 and the Frauscher Insights applications Diagnostics and Motion.
Train DetectionKazakhstan

FAdC at Vhodnaya Station

ArcelorMittal is responsible for the operation of a dedicated industrial railway infrastructure located in Temirtau, Kazakhstan. At Vhodnaya station, an essential shunting yard, various goods and materials, such as polyester, zinc, aluminium, sinter, iron ore, and coke-chemical products, are loaded and unloaded. The station's robust infrastructure features 64 switching points and 68 signals, necessitating the use of a high-performing train detection system to ensure the safe and efficient management of traffic flow.
Train DetectionUnited States of America

Reducing Delays in a Metro (subway) Environment

A large metro operator was researching ways to reduce bottlenecks that were causing significant delays at a busy station. With two routes dividing in close proximity to the station and a complex auto-routing system that required the use of a 30-second timer to release switches, trains would frequently back up when approaching the station.
Train DetectionAustria

GKB Graz-Köflacher Bahn

The operator of the Graz-Köflacher Bahn has made substantial modernisations to the network, choosing a decentralised system architecture and the EULYNX standardised interface. In this case, it was crucial that the new system would ensure a seamless transition from the previous parallel interface for relay systems to EULYNX.
Train DetectionUnited States of America

Charlotte Area Transit System (CATS) Supplementing Audio Frequency Track Circuits with Axle Counters

At the Charlotte Area Transit System, frequent false red signal overruns resulted when electromagnetic interference caused “bobbing” of the line’s audio frequency track circuits. The Frauscher Advanced Counter FAdC was subsequently considered as an alternative to these track circuits to eliminate the occurrence of false red signal overruns.