Renewal signalling FAdC and RSR123 | Denmark
train-detectionDenmark

Renewal signalling FAdC and RSR123 | Denmark

Operator
BaneDanemark
Country
Denmark
Partner
Alstom
Segment
Main & Regional Line
Application
Track Vacancy Detection
Products
RSR123, FAdC
Protocols
Proprietary protocols
Year
2009
Scope of project
Approx. 2500 track sections, 3000 counting heads

Banedanmark, the Danish railway infrastructure owner, started replacing the existing signalling system in the Eastern region of Denmark in 2009 to implement the newest proven signalling technology, based on standard industrial hardware components and redundant system configurations. Uniform system interfaces should reduce signalling failures to provide a better reliability and punctuality of the entire network. For this project, Frauscher delivered the Frauscher Advanced Counter FAdC and the Frauscher Wheel Sensor RSR123.

When replacing the existing signalling system in the Eastern region of Denmark with Alstom’s proven Atlas solution, Frauscher delivered both, the Frauscher Advanced Counter FAdC and the Frauscher Wheel Sensor RSR123.

To ensure a complete and smooth integration of the Frauscher Advanced Counter into the design of the interlocking system, Alstom’s interface protocol FSFB2 has been implemented into the FAdC. Due to this, all required information such as configuration files and design documentation can be generated automatically. This allows a significant reduction of the configuration and test outlay and increases the flexibility of further changes during the project without a considerable increase in additional costs.

Frauscher Diagnostic System FDS offers a software interface to allow a total integration of FAdC diagnostics into operator’s overall diagnostic and maintenance system.

The use of the RSR123 increases the reliability in conditions of strong electromagnetic interferences. As no active electronic components are used on the trackside, the availability of this Frauscher wheel detection system is extremely high.

Reduction of life cycle costs

The preventative maintenance, optimisation of fault rectification, unrestricted online access to the axle counting system data and the minimisation of maintenance work led to a reduction in life cycle costs.

Reduction of configuration outlay

A complete integration of the Frauscher Advanced Counter FAdC allows an automatic generation of configuration files and design documents to reduce the configuration and test outlay.

Less calibration errors

The automatic calibration process, which can be triggered remotely makes sure the user spends as little time as possible on the track and helps avoiding calibration errors.

Similar Projects
This might also interest you
1/5
train-detectionChina

CBTC Fallback System on Beijing Metro Lines | China

Beijing metro, one of the busiest lines in the world, was Frauscher’s very first assignment when entering the Chinese market. Due to its utilised capacity, it requires a great level of stability, reliability and performance of the entire signalling system. The Communication Based Train Control System (CBTC) applied here relies on a backup system consisting of fixed automatic train detection systems. Axle counting systems from Frauscher are perfectly suited for the accurate operation of such stand-by systems.
train-detectionCanada

City of Calgary Grade Crossing Upgrade | Canada

The City of Calgary in Alberta, Canada was seeking an upgrade to the existing signaling system at a crossing near a station in the downtown area, to alleviate shunt issues caused by winter conditions. The Frauscher Advanced Counter FAdC and Wheel Sensors RSR180 were chosen to augment the existing system. During the eleven month trial period, the axle counter ran in shadow mode with the legacy system to gauge performance and compatibility. After the axle counter was proven during the trial with no faults or errors, the city was able to implement a hybrid crossing design using both the axle counting system and track circuits.
data-transmissionUnited Kingdom of Great Britain and Northern Ireland

Headbolt Lane to Rainford Project | United Kingdom

As part of the project to expand Merseyrail services, the operator needed to address the challenge of transmitting indication information over a specific section, spanning from Headbolt Lane to Rainford. In this instance, Frauscher’s technology was utilised to fulfill the data transmission requirements of this project, avoiding expensive and time consuming cabling that would have otherwise been required.
train-detectionUnited States of America

Charlotte Area Transit System (CATS) Supplementing Audio Frequency Track Circuits with Axle Counters | USA

At the Charlotte Area Transit System, frequent false red signal overruns resulted when electromagnetic interference caused “bobbing” of the line’s audio frequency track circuits. The Frauscher Advanced Counter FAdC was subsequently considered as an alternative to these track circuits to eliminate the occurrence of false red signal overruns.
train-detectionUnited Kingdom of Great Britain and Northern Ireland

The Borders Railway Project | United Kingdom

From Shawfair to Tweedbank, the Borders Railway rail route underwent significant renovations after 45 years of disconnect due to Beeching cuts. Our Frauscher UK & Ireland team were involved in providing innovative solutions for train detection for a section of the Borders Railway route.