Toronto Transit Commission | Canada
train-detectionCanada

Toronto Transit Commission | Canada

Operator
TTC
Country
Canada
Partner
Alstom
Segment
Urban
Application
CBTC Fallback
Products
RSR180, ACS2000
Year
2015

The Toronto Transit Commission (TTC) Line 1 Yonge-University is Toronto’s longest subway line, with track circuits utilized for signalling. Due to an increasing number of daily passengers and an aged system the need for upgrading without interfering with the daily operations became readily apparent. It was further required that the new signalling system functions independently of the existing system. It would provide CBTC fallback functionalities, and work as an overlay to the current track circuit-based system.

Frauscher entered into discussions with TTC to consider the benefits of Frauscher axle counters for this application. The transit needed to gain experience and further knowledge as to how the product would perform, so Frauscher offered a test trial for TTC to assess compatibility with their existing system. The trial also allowed them to test performance under conditions typical for the area, such as cold temperatures, ice, snow and road salting. Frauscher installed two Wheel Sensors RSR180 to work with the Axle Counter ACS2000. Although the scope of the test was small, TTC was able to experience how quickly and easily the system could be installed without affecting the daily operation of the busy commuter line. During the trial period of more than a year, there were zero miscounts recorded.

Due to the size of the upgrade and the need to minimize impact on daily operations, the project was broken down into several phases between 2020 and 2021. After completion, trains on Line 1 Yonge-University will be detected by 603 wheel sensors, which will form 469 track sections. The indoor equipment of the ACS2000 will evaluate the data in 31 cubicles located along the line.

Easy and quick installation

Per customer requirement, the wheel sensors and axle counters were installed without interfering with the track circuits already in place. Mounting of the wheel sensors was completed quickly, due to the use of the Frauscher Rail Claw. The rail claw is attached in about five minutes, without drilling the rail.

Increasing system availability

The ACS2000’s cost effective operation is further enhanced by use of optional add-on functionalities that increase reliability and uptime of the entire network such Counting Head Control CHC and the Frauscher Diagnostic System FDS.

Similar Projects
This might also interest you
1/5
train-detectionPoland

Metro Warsaw | Poland

Metro Warsaw was looking for an alternative to track circuits for the line M2, to increase the availability of public transport by using reliable signalling technology. In the end, the operator even decided to replace the existing track circuits on line M1 with the Frauscher Axle Counter ACS200.
train-detectionChina

CBTC Fallback System on Beijing Metro Lines | China

Beijing metro, one of the busiest lines in the world, was Frauscher’s very first assignment when entering the Chinese market. Due to its utilised capacity, it requires a great level of stability, reliability and performance of the entire signalling system. The Communication Based Train Control System (CBTC) applied here relies on a backup system consisting of fixed automatic train detection systems. Axle counting systems from Frauscher are perfectly suited for the accurate operation of such stand-by systems.
train-detectionSpain

Three-rail Castellbisbal | Spain

The dual-gauge system of the Spanish railway network is quite challenging in terms of track vacancy detection: Wheel sensors must be installed on two rails next to each other in tight spaces and have to detect axles reliably on the respective rail. Frauscher developed a solution which copes also with the complexity of different interlocking technology in the stations along the line.
train-detectionUnited States of America

Frauscher Track Vacancy System FTVS Testing | USA

During the initial development phase of the Frauscher Track Vacancy System FTVS, a number of pre-production units were released for real-world testing to examine their performance in typical yard environments. Consequently, several trials were conducted in the United States.
train-detectionUnited States of America

Class 1 Grade Crossing Enhancement FAdC and RSR180 | USA

Frauscher was approached by a US Class 1 railroad regarding a grade crossing owned and operated by them, on a track crossing a public road. The operator’s main goal was to find a signaling solution that would seamlessly integrate with the current crossing controller and keep the crossing operational under challenging operational conditions. The Frauscher Advanced Counter FAdC and Wheel Sensor RSR180 were chosen as the ideal solution for this particular project.