Dillinger Hütte | Germany
train-detectionGermany

Dillinger Hütte

Operator
AG der Dillinger Hüttenwerke
Country
Germany
Partner
Hanning & Kahl GmbH
Segment
Industrial & Mining
Application
Track Vacancy Detection
Products
RSR180, FAdC®i
Year
2012
Scope of project
34 counting heads

A new ladder track was required to provide more parking tracks in the steel plant. At the same time, the layout of the dead end tracks were optimised and the efficiency of the whole depot improved by installing the Frauscher Advanced Counter FAdC®i in combination with the wheel sensor RSR180. With the implementation of the Frauscher Diagnostic System FDS, the overall maintenance costs can be significantly reduced.

Hanning & Kahl implemented 16 power operated, locally controlled points (EOW). A SIL3 proven control ensures safe, flexible and efficient operation. The Frauscher Axle Counter FAdC®i in combination with the wheel sensor RSR180 guarantees reliable train detection, while Frauscher Diagnostic System FDS provides diagnostic data to the higher level control system.

Thanks to the FDS which allows collection of data all over the system, the maintenance staff is now provided with diagnostic tools and a virtual track representation of the entire depot area. Irregularities and failures can be detected in advance before coming to expensive breakdowns. With the condition-based maintenance replacing scheduled maintenance, the overall cost can be significantly reduced.

Functional modularity

The FAdC® provides reset options, counting head information, counting head control functionality and comprehensive diagnostic facilities.

Optimise maintenance

Analysis of diagnostic data provided by FDS allows condition-based maintenance and preventive measures.

Similar Projects
This might also interest you
1/5
data-transmissionIndia

South Central Railway

The Vijayawada Division of Indian Railways introduced a new train detection system with data transmission functionality to overcome the challenges of the existing BPAC and conventional quad cable-based systems. Frauscher implemented the Frauscher Advanced Counter FAdC®, featuring full redundancy, advanced reset mechanisms and remote diagnostics. This upgrade delivers significant cost savings and enhanced system availability for the operator.
train-detectionCanada

Toronto Transit Commission

The Toronto Transit Commission (TTC) Line 1 Yonge-University is Toronto’s longest subway line, with track circuits utilized for signalling. Due to an increasing number of daily passengers and an aged system the need for upgrading without interfering with the daily operations became readily apparent. It was further required that the new signalling system functions independently of the existing system. It would provide CBTC fallback functionalities, and work as an overlay to the current track circuit-based system.
data-transmissionUnited Kingdom of Great Britain and Northern Ireland

Headbolt Lane to Rainford Project

As part of the project to expand Merseyrail services, the operator needed to address the challenge of transmitting indication information over a specific section, spanning from Headbolt Lane to Rainford. In this instance, Frauscher’s technology was utilised to fulfill the data transmission requirements of this project, avoiding expensive and time consuming cabling that would have otherwise been required.
train-detectionChina

Fenghuang Maglev

Fenghuang Maglev is a medium-low speed maglev rapid transit line. Since maglev trains do not have wheels, traditional wheel-based detection systems cannot be directly applied to maglev traffic engineering.
train-detectionUnited States of America

Tracking Trains in Houston

Houston MetroRail (METRO for short) is comprised of three light-rail lines covering 22 miles. Two-car, low-floor trainsets are powered by overhead catenary and operated on a mix of rail types, including embedded, grooved, concrete, and ballasted track. Harsh weather conditions such as extreme heat, humidity, and storms with heavy rains causing floods are typical for Houston. Combined with the variable track structure this caused significant malfunctions of the wheel sensors of METRO’s signalling system.